Voir la notice de l'article provenant de la source International Scientific Research Publications
$x_{n+1} = \frac{y_{n-3} }{\pm 1\pm y_nz_{n-1}x_{n-2}y_{n-3}}, y_{n+1} = \frac{z_{n-3} }{\pm 1\pm z_nx_{n-1}y_{n-2}z_{n-3}}, z_{n+1} = \frac{x_{n-3} }{\pm 1\pm x_ny_{n-1}z_{n-2}x_{n-3}},$ |
El-Dessoky, M. M. 1 ; Elsayed, E. M. 1 ; Alzahrani, E. O. 2
@article{JNSA_2016_9_10_a9, author = {El-Dessoky, M. M. and Elsayed, E. M. and Alzahrani, E. O.}, title = {The form of solutions and periodic nature for some rational difference equations systems}, journal = {Journal of nonlinear sciences and its applications}, pages = {5629-5647}, publisher = {mathdoc}, volume = {9}, number = {10}, year = {2016}, doi = {10.22436/jnsa.009.10.10}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.10/} }
TY - JOUR AU - El-Dessoky, M. M. AU - Elsayed, E. M. AU - Alzahrani, E. O. TI - The form of solutions and periodic nature for some rational difference equations systems JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 5629 EP - 5647 VL - 9 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.10/ DO - 10.22436/jnsa.009.10.10 LA - en ID - JNSA_2016_9_10_a9 ER -
%0 Journal Article %A El-Dessoky, M. M. %A Elsayed, E. M. %A Alzahrani, E. O. %T The form of solutions and periodic nature for some rational difference equations systems %J Journal of nonlinear sciences and its applications %D 2016 %P 5629-5647 %V 9 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.10/ %R 10.22436/jnsa.009.10.10 %G en %F JNSA_2016_9_10_a9
El-Dessoky, M. M.; Elsayed, E. M.; Alzahrani, E. O. The form of solutions and periodic nature for some rational difference equations systems. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 10, p. 5629-5647. doi : 10.22436/jnsa.009.10.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.10/
[1] Difference equations and inequalities, Theory, methods, and applications, Second edition, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc, Volume New York (2000), pp. 1-2000
[2] Dynamics of a rational difference equation, Appl. Math. Comput., Volume 176 (2006), pp. 768-774
[3] The dynamics of the difference equation\( x_{n+1} = \frac{\alpha x_{n-k}}{ \beta+\gamma x^p_{n-(k+1)}}\), Ars Combin., Volume 97 (2010), pp. 281-288
[4] Rational systems in the plane, J. Difference Equ. Appl., Volume 15 (2009), pp. 303-323
[5] On the positive solutions of the difference equation system \(x_{n+1 }= \frac{1}{ y_n} ; y_{n+1} =\frac{ y_n}{ x_{n-1}y_{n-1}}\), Appl. Math. Comput., Volume 158 (2004), pp. 303-305
[6] A coupled system of rational difference equations, Comput. Math. Appl., Volume 43 (2002), pp. 849-867
[7] On a system of rational difference equations, World Appl. Sci. J., Volume 10 (2010), pp. 1306-1312
[8] Behavior of a competitive system of second-order difference equations, Sci. World J., Volume 2014 (2014), pp. 1-9
[9] Global asymptotic stability for quadratic fractional difference equation, Adv. Difference Equ., Volume 2015 (2015), pp. 1-13
[10] Asymptotic behavior of two dimensional rational system of difference equations, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, Volume 20 (2013), pp. 221-235
[11] On the solutions of a class of difference equations systems, Demonstratio Math., Volume 41 (2008), pp. 109-122
[12] Global behavior of the solutions of some difference equations, Adv. Difference Equ., Volume 2011 (2011), pp. 1-16
[13] An introduction to difference equations, Third edition, Undergraduate Texts in Mathematics, Springer, New York, 2005
[14] The form of solutions and periodicity for some systems of third-order rational difference equations, Math. Methods Appl. Sci., Volume 39 (2016), pp. 1076-1092
[15] Solutions of fractional systems of difference equations, Ars Combin., Volume 110 (2013), pp. 469-479
[16] On the dynamics of the recursive sequence \(x_{n+1} = \frac{x_{n-1}}{\beta+\gamma x^2_{n-2}x_{n-4}+\gamma x_{n-2}x^2_{n-4}}\), Comput. Math. Appl., Volume 61 (2011), p. 553-537
[17] Dynamics of an anti-competitive two dimensional rational system of difference equations, Sarajevo J. Math., Volume 7 (2011), pp. 39-56
[18] Periodicities in nonlinear difference equations, Advances in Discrete Mathematics and Applications, Chapman & Hall/CRC, Boca Raton, 2005
[19] Existence and behavior of solutions of a rational system, Appl. Nonlinear Anal., Volume 8 (2001), pp. 1-25
[20] Periodicity and analytic solution of a recursive sequence with numerical examples, J. Interdiscip. Math., Volume 12 (2009), pp. 701-708
[21] Global behavior of nonlinear difference equations of higher order with applications, Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1993
[22] Global behavior of a three-dimensional linear fractional system of difference equations, J. Math. Anal. Appl., Volume 310 (2005), pp. 673-689
[23] On the behavior of solutions of the system of rational dierence equations \(x_{n+1} =\frac{ x_{n-1}}{\gamma _nx_{n-1}-1} ; \gamma _{n+1} = \frac{\gamma _{n-1}}{ x_n\gamma_{ n-1}-1} ; z_{n+1} =\frac{ 1}{ \gamma _nz_n}\), Adv. Difference Equ., Volume 2011 (2011), pp. 1-8
[24] On the behavior of positive solutions of the system of rational difference equations \(x_{n+1} =\frac{ x_{n-1}}{ y_nx_{n-1}+1} , y_{n+1} =\frac{ y_{n-1}}{ x_ny_{n-1}+1}\), Math. Comput. Modelling, Volume 53 (2011), pp. 1261-1267
[25] On the system of rational difference equations \(x_{n+1} = \frac{a}{y_{n-3}}; y_{n+1} = \frac{by_{n-3}}{x_{n-q}y_{n-q}}\), Appl. Math. Comput., Volume 188 (2007), pp. 833-837
[26] On a system of difference equations, Discrete Dyn. Nat. Soc., Volume 2013 (2013), pp. 1-7
[27] On the periodicity of some systems of nonlinear difference equations, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), Volume 55 (2012), pp. 217-224
[28] Global asymptotic stability of equilibrium point for a family of rational difference equations, Appl. Math. Lett., Volume 24 (2011), pp. 714-718
[29] On the global asymptotic behavior of a system of two nonlinear difference equations, Ars Combin., Volume 95 (2010), pp. 151-159
[30] On solutions of a system of rational difference equations, Acta Math. Univ. Comenian. (N.S.), Volume 80 (2011), pp. 63-70
[31] On the system of high order rational difference equations \(x_n =\frac{ a}{ y_{n-p}} ; y_n =\frac{ by_{n-p}}{ x_{n-q}y_{n-q}}\), Appl. Math. Comput., Volume 171 (2005), pp. 853-856
[32] All solutions of a class of discrete-time systems are eventually periodic, Appl. Math. Comput., Volume 158 (2004), pp. 537-546
[33] Dynamical behavior of a system of third-order rational difference equation, Discrete Dyn. Nat. Soc., Volume 2015 (2015), pp. 1-6
[34] On the system of rational difference equations \(x_n = A + \frac{1}{ y_{n-p}} ; y_n = A +\frac{ y_{n-1}}{ x_{n-r}y_{n-s}}\), Appl. Math. Comput., Volume 176 (2006), pp. 403-408
Cité par Sources :