The form of solutions and periodic nature for some rational difference equations systems
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 10, p. 5629-5647.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we investigate the expressions of solutions and the periodic nature of the following systems of rational difference equations with order four
$x_{n+1} = \frac{y_{n-3} }{\pm 1\pm y_nz_{n-1}x_{n-2}y_{n-3}}, y_{n+1} = \frac{z_{n-3} }{\pm 1\pm z_nx_{n-1}y_{n-2}z_{n-3}}, z_{n+1} = \frac{x_{n-3} }{\pm 1\pm x_ny_{n-1}z_{n-2}x_{n-3}},$
with initial conditions $x_{-3}; x_{-2}; x_{-1}; x_0; y_{-3}; y_{-2}; y_{-1}; y_0; z_{-3}; z_{-2}; z_{-1}$ and $z_0$ which are arbitrary real numbers.
DOI : 10.22436/jnsa.009.10.10
Classification : 39A20, 39A23, 39A30
Keywords: Difference equations, recursive sequences, stability, periodic solution, system of difference equations.

El-Dessoky, M. M. 1 ; Elsayed, E. M. 1 ; Alzahrani, E. O. 2

1 Faculty of Science, Mathematics Department, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia;Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
2 Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
@article{JNSA_2016_9_10_a9,
     author = {El-Dessoky, M. M. and Elsayed, E. M. and Alzahrani, E. O.},
     title = {The form of solutions and periodic nature for some rational difference equations systems},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5629-5647},
     publisher = {mathdoc},
     volume = {9},
     number = {10},
     year = {2016},
     doi = {10.22436/jnsa.009.10.10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.10/}
}
TY  - JOUR
AU  - El-Dessoky, M. M.
AU  - Elsayed, E. M.
AU  - Alzahrani, E. O.
TI  - The form of solutions and periodic nature for some rational difference equations systems
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5629
EP  - 5647
VL  - 9
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.10/
DO  - 10.22436/jnsa.009.10.10
LA  - en
ID  - JNSA_2016_9_10_a9
ER  - 
%0 Journal Article
%A El-Dessoky, M. M.
%A Elsayed, E. M.
%A Alzahrani, E. O.
%T The form of solutions and periodic nature for some rational difference equations systems
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5629-5647
%V 9
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.10/
%R 10.22436/jnsa.009.10.10
%G en
%F JNSA_2016_9_10_a9
El-Dessoky, M. M.; Elsayed, E. M.; Alzahrani, E. O. The form of solutions and periodic nature for some rational difference equations systems. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 10, p. 5629-5647. doi : 10.22436/jnsa.009.10.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.10/

[1] Agarwal, R. P. Difference equations and inequalities, Theory, methods, and applications, Second edition, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc, Volume New York (2000), pp. 1-2000

[2] Aloqeili, M. Dynamics of a rational difference equation, Appl. Math. Comput., Volume 176 (2006), pp. 768-774

[3] Battaloglu, N.; Çinar, C.; Yalcinkaya, I. The dynamics of the difference equation\( x_{n+1} = \frac{\alpha x_{n-k}}{ \beta+\gamma x^p_{n-(k+1)}}\), Ars Combin., Volume 97 (2010), pp. 281-288

[4] Camouzis, E.; Kulenović, M. R. S.; Ladas, G.; Merino, O. Rational systems in the plane, J. Difference Equ. Appl., Volume 15 (2009), pp. 303-323

[5] Çinar, C. On the positive solutions of the difference equation system \(x_{n+1 }= \frac{1}{ y_n} ; y_{n+1} =\frac{ y_n}{ x_{n-1}y_{n-1}}\), Appl. Math. Comput., Volume 158 (2004), pp. 303-305

[6] Clark, D.; Kulenović, M. R. S. A coupled system of rational difference equations, Comput. Math. Appl., Volume 43 (2002), pp. 849-867

[7] Das, S. E.; Bayram, M. On a system of rational difference equations, World Appl. Sci. J., Volume 10 (2010), pp. 1306-1312

[8] Din, Q.; Ibrahim, T. F.; Khan, K. A. Behavior of a competitive system of second-order difference equations, Sci. World J., Volume 2014 (2014), pp. 1-9

[9] DiPippo, M.; Janowski, E. J.; Kulenović, M. R. S. Global asymptotic stability for quadratic fractional difference equation, Adv. Difference Equ., Volume 2015 (2015), pp. 1-13

[10] Elabbasy, E. M.; Eleissawy, S. M. Asymptotic behavior of two dimensional rational system of difference equations, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, Volume 20 (2013), pp. 221-235

[11] Elabbasy, E. M.; El-Metwally, H. A.; Elsayed, E. M. On the solutions of a class of difference equations systems, Demonstratio Math., Volume 41 (2008), pp. 109-122

[12] Elabbasy, E. M.; El-Metwally, H. A.; Elsayed, E. M. Global behavior of the solutions of some difference equations, Adv. Difference Equ., Volume 2011 (2011), pp. 1-16

[13] Elaydi, S. An introduction to difference equations, Third edition, Undergraduate Texts in Mathematics, Springer, New York, 2005

[14] El-Dessoky, M. M. The form of solutions and periodicity for some systems of third-order rational difference equations, Math. Methods Appl. Sci., Volume 39 (2016), pp. 1076-1092

[15] Elsayed, E. M.; Mansour, M.; El-Dessoky, M. M. Solutions of fractional systems of difference equations, Ars Combin., Volume 110 (2013), pp. 469-479

[16] Erdogan, M. E.; Cinar, C.; Yalcinkaya, I. On the dynamics of the recursive sequence \(x_{n+1} = \frac{x_{n-1}}{\beta+\gamma x^2_{n-2}x_{n-4}+\gamma x_{n-2}x^2_{n-4}}\), Comput. Math. Appl., Volume 61 (2011), p. 553-537

[17] Garić-Demirović, M.; Nurkanović, M. Dynamics of an anti-competitive two dimensional rational system of difference equations, Sarajevo J. Math., Volume 7 (2011), pp. 39-56

[18] Grove, E. A.; Ladas, G. Periodicities in nonlinear difference equations, Advances in Discrete Mathematics and Applications, Chapman & Hall/CRC, Boca Raton, 2005

[19] Grove, E. A.; Ladas, G.; McGrath, L. C.; Teixeira, C. T. Existence and behavior of solutions of a rational system, Appl. Nonlinear Anal., Volume 8 (2001), pp. 1-25

[20] Ibrahim, T. F. Periodicity and analytic solution of a recursive sequence with numerical examples, J. Interdiscip. Math., Volume 12 (2009), pp. 701-708

[21] Kocić, V. L.; Ladas, G. Global behavior of nonlinear difference equations of higher order with applications, Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1993

[22] Kulenović, M. R. S.; Nurkanović, Z. Global behavior of a three-dimensional linear fractional system of difference equations, J. Math. Anal. Appl., Volume 310 (2005), pp. 673-689

[23] A. S. Kurbanli On the behavior of solutions of the system of rational dierence equations \(x_{n+1} =\frac{ x_{n-1}}{\gamma _nx_{n-1}-1} ; \gamma _{n+1} = \frac{\gamma _{n-1}}{ x_n\gamma_{ n-1}-1} ; z_{n+1} =\frac{ 1}{ \gamma _nz_n}\), Adv. Difference Equ., Volume 2011 (2011), pp. 1-8

[24] Kurbanli, A. S.; Çinar, C.; Yalçinkaya, I. On the behavior of positive solutions of the system of rational difference equations \(x_{n+1} =\frac{ x_{n-1}}{ y_nx_{n-1}+1} , y_{n+1} =\frac{ y_{n-1}}{ x_ny_{n-1}+1}\), Math. Comput. Modelling, Volume 53 (2011), pp. 1261-1267

[25] Özban, A. Y. On the system of rational difference equations \(x_{n+1} = \frac{a}{y_{n-3}}; y_{n+1} = \frac{by_{n-3}}{x_{n-q}y_{n-q}}\), Appl. Math. Comput., Volume 188 (2007), pp. 833-837

[26] Özkan, O.; Kurbanli, A. S. On a system of difference equations, Discrete Dyn. Nat. Soc., Volume 2013 (2013), pp. 1-7

[27] Touafek, N.; Elsayed, E. M. On the periodicity of some systems of nonlinear difference equations, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), Volume 55 (2012), pp. 217-224

[28] Wang, C.-Y.; Wang, S.; Wang, W. Global asymptotic stability of equilibrium point for a family of rational difference equations, Appl. Math. Lett., Volume 24 (2011), pp. 714-718

[29] Yalcinkaya, I. On the global asymptotic behavior of a system of two nonlinear difference equations, Ars Combin., Volume 95 (2010), pp. 151-159

[30] Yang, Y.; Chen, L.; Shi, Y.-G. On solutions of a system of rational difference equations, Acta Math. Univ. Comenian. (N.S.), Volume 80 (2011), pp. 63-70

[31] Yang, X. F.; Liu, Y. X.; Bai, S. On the system of high order rational difference equations \(x_n =\frac{ a}{ y_{n-p}} ; y_n =\frac{ by_{n-p}}{ x_{n-q}y_{n-q}}\), Appl. Math. Comput., Volume 171 (2005), pp. 853-856

[32] Yuan, Z. H.; Huang, L. H. All solutions of a class of discrete-time systems are eventually periodic, Appl. Math. Comput., Volume 158 (2004), pp. 537-546

[33] Zhang, Q. H.; Liu, J. Z.; Luo, Z. G. Dynamical behavior of a system of third-order rational difference equation, Discrete Dyn. Nat. Soc., Volume 2015 (2015), pp. 1-6

[34] Zhang, Y.; Yang, X. F.; Megson, G. M.; Evans, D. J. On the system of rational difference equations \(x_n = A + \frac{1}{ y_{n-p}} ; y_n = A +\frac{ y_{n-1}}{ x_{n-r}y_{n-s}}\), Appl. Math. Comput., Volume 176 (2006), pp. 403-408

Cité par Sources :