A new numerical technique for local fractional diffusion equation in fractal heat transfer
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 10, p. 5621-5628.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, a new numerical approach, embedding the differential transform (DT) and Laplace trans- form (LT), is firstly proposed. It is considered in the local fractional derivative operator for obtaining the non-differential solution for diffusion equation in fractal heat transfer.
DOI : 10.22436/jnsa.009.10.09
Classification : 76R50, 26A33, 44A10, 28A80
Keywords: Numerical solution, di usion equation, di erential transform, Laplace transform, fractal heat transfer, local fractional derivative.

Yang, Xiao-Jun 1 ; Machado, J. A. Tenreiro 2 ; Baleanu, Dumitru 3 ; Gao, Feng 1

1 School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China;State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China
2 Department of Electrical Engineering, Institute of Engineering, Polytechnic of Porto, Rua Dr. Antonio Bernardino de Almeida, 4249-015 Porto, Portugal
3 Department of Mathematics, Cankya University, Ogretmenler Cad. 14, Balgat-06530, Ankara, Turkey;Institute of Space Sciences, Magurele-Bucharest, Romania
@article{JNSA_2016_9_10_a8,
     author = {Yang, Xiao-Jun and Machado, J. A. Tenreiro and Baleanu, Dumitru and Gao, Feng},
     title = {A new numerical technique for local fractional diffusion equation in fractal heat transfer},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5621-5628},
     publisher = {mathdoc},
     volume = {9},
     number = {10},
     year = {2016},
     doi = {10.22436/jnsa.009.10.09},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.09/}
}
TY  - JOUR
AU  - Yang, Xiao-Jun
AU  - Machado, J. A. Tenreiro
AU  - Baleanu, Dumitru
AU  - Gao, Feng
TI  - A new numerical technique for local fractional diffusion equation in fractal heat transfer
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5621
EP  - 5628
VL  - 9
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.09/
DO  - 10.22436/jnsa.009.10.09
LA  - en
ID  - JNSA_2016_9_10_a8
ER  - 
%0 Journal Article
%A Yang, Xiao-Jun
%A Machado, J. A. Tenreiro
%A Baleanu, Dumitru
%A Gao, Feng
%T A new numerical technique for local fractional diffusion equation in fractal heat transfer
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5621-5628
%V 9
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.09/
%R 10.22436/jnsa.009.10.09
%G en
%F JNSA_2016_9_10_a8
Yang, Xiao-Jun; Machado, J. A. Tenreiro; Baleanu, Dumitru; Gao, Feng. A new numerical technique for local fractional diffusion equation in fractal heat transfer. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 10, p. 5621-5628. doi : 10.22436/jnsa.009.10.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.09/

[1] Almeida, R.; Malinowska, A. B.; Torres, D. F. M. A fractional calculus of variations for multiple integrals with application to vibrating string, J. Math. Phys., Volume 51 (2010), pp. 1-12

[2] Alquran, M.; Al-Khaled, K.; Ali, M.; Ta'any, A. The combined Laplace transform-differential transform method for solving linear non-homogeneous PDEs, J. Math. Comput. Sci., Volume 2 (2012), pp. 690-701

[3] Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J. J. Models and numerical methods, World Sci., Volume 3 (2012), pp. 10-16

[4] Baleanu, D.; Machado, J. A. T.; Luo, A. C. J. Fractional dynamics and control, Springer, Berlin, 2012

[5] Bhrawy, A. H.; Doha, E. H.; Baleanu, D.; Ezz-Eldien, S. S. A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations, J. Comput. Phys., Volume 293 (2015), pp. 142-156

[6] Cao, Y.; Ma, W.-G.; Ma, L.-C. Local fractional functional method for solving diffusion equations on Cantor sets, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-6

[7] Carpinteri, A.; Cornetti, P. A fractional calculus approach to the description of stress and strain localization in fractal media, Chaos Solitons Fractals, Volume 13 (2002), pp. 85-94

[8] Cattani, C.; Srivastava, H. M.; Yang, X.-J. Fractional dynamics, De Gruyter Open, Berlin, 2015

[9] Diethelm, K.; Ford, N. J.; Freed, A. D.; Luchko, Y. Algorithms for the fractional calculus: a selection of numerical methods, Comput. Methods Appl. Mech. Engrg, Volume 194 (2005), pp. 743-773

[10] Golmankhaneh, A. K.; Golmankhaneh, A. K.; Baleanu, D. On nonlinear fractional Klein-Gordon equation, Signal Process., Volume 91 (2011), pp. 446-451

[11] o, R. Goren; Mainardi, F. Fractional calculus: integral and differential equations of fractional order, Fractals and fractional calculus in continuum mechanics, Udine, (1996), 223-276, CISM Courses and Lectures, Springer, Vienna, 1997

[12] o, R. Goren; Mainardi, F.; Moretti, D.; Pagnini, G.; Paradisi, P. Fractional diffusion: probability distributions and random walk models, Non extensive thermodynamics and physical applications, Villasimius, (2001), Phys. A, Volume 305 (2002), pp. 106-112

[13] He, J.-H. A tutorial review on fractal spacetime and fractional calculus, Internat. J. Theoret. Phys., Volume 53 (2014), pp. 3698-3718

[14] Hristov, J. Approximate solutions to fractional subdiffusion equations, Eur. Phys. J. Spec. Top., Volume 193 (2013), pp. 229-243

[15] Jafari, H.; Seifi, S. Solving a system of nonlinear fractional partial differential equations using homotopy analysis method, Commun. Nonlinear Sci. Numer. Simul., Volume 14 (2009), pp. 1962-1969

[16] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J. Theory and applications of fractional differential equations, North- Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 1997

[17] Kolwankar, K. M.; Gangal, A. D. Local fractional Fokker-Planck equation, Phys. Rev. Lett., Volume 80 (1998), pp. 214-217

[18] Li, C. P.; Zeng, F. H. The finite difference methods for fractional ordinary differential equations, Numer. Funct. Anal. Optim., Volume 34 (2013), pp. 149-179

[19] Liu, F.; Anh, V. V.; Turner, I.; Zhuang, P. Time fractional advection-dispersion equation, J. Appl. Math. Comput., Volume 13 (2003), pp. 233-245

[20] Liu, H.-Y.; He, J.-H.; Li, Z.-B. Fractional calculus for nanoscale flow and heat transfer, Internat. J. Numer. Methods Heat Fluid Flow, Volume 24 (2014), pp. 1227-1250

[21] Liu, C.-F.; Kong, S.-S.; Yuan, S.-J. Reconstructive schemes for variational iteration method within Yang-Laplace transform with application to fractal heat conduction problem, Therm. Sci., Volume 17 (2013), pp. 715-721

[22] Luchko, Y.; o, R. Goren An operational method for solving fractional differential equations with the Caputo derivatives, Acta Math. Vietnam., Volume 24 (1999), pp. 207-233

[23] Luchko, Y. F.; Srivastava, H. M. The exact solution of certain differential equations of fractional order by using operational calculus, Comput. Math. Appl., Volume 29 (1995), pp. 73-85

[24] Muresan, C. I.; Ionescu, C.; Folea, S.; Keyser, R. De Fractional order control of unstable processes: the magnetic levitation study case, Nonlinear Dyn., Volume 80 (2014), pp. 1761-1772

[25] Odibat, Z.; Momani, S. A generalized differential transform method for linear partial differential equations of fractional order, Appl. Math. Lett., Volume 21 (2008), pp. 194-199

[26] Ortigueira, M. D. Fractional calculus for scientists and engineers, Lecture Notes in Electrical Engineering, Springer, Dordrecht, 2011

[27] Podlubny, I.; Chechkin, A.; Skovranek, T.; Chen, Y. Q.; Jara, B. M. Vinagre Matrix approach to discrete fractional calculus. II. Partial fractional differential equations, J. Comput. Phys., Volume 228 (2009), pp. 3137-3153

[28] Rossikhin, Y. A.; Shitikova, M. V. Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results, Appl. Mech. Rev., Volume 63 (2010), pp. 1-52

[29] Sakar, M. G.; Erdogan, F.; Yıldırım, A. Variational iteration method for the time-fractional Fornberg-Whitham equation, Comput. Math. Appl., Volume 63 (2012), pp. 1382-1388

[30] Samko, S. G.; Kilbas, A. A.; Marichev, O. I. Fractional integrals and derivatives, Theory and applications, Edited and with a foreword by S. M. Nikolskiĭ, Translated from the 1987 Russian original, Revised by the authors, Gordon and Breach Science Publishers, Yverdon, 1993

[31] Shawagfeh, N. T. Analytical approximate solutions for nonlinear fractional differential equations, Appl. Math. Comput., Volume 131 (2002), pp. 517-529

[32] S.Wei; Chen, W.; Hon, Y.-C. Implicit local radial basis function method for solving two-dimensional time fractional diffusion equations, Therm. Sci., Volume 19 (2015), pp. 59-67

[33] West, B. J.; Grigolini, P.; Nonnenmacher, R. Metzler T. F. Fractional diffusion and Lévy stable processes, Phys. Rev. E, Volume 55 (1997), pp. 99-106

[34] Yang, X.-J. Advanced local fractional calculus and its applications, World Sci., New York, 2012

[35] Yang, X.-J.; Baleanu, D.; Srivastava, H. M. Local fractional similarity solution for the diffusion equation defined on Cantor sets, Appl. Math. Lett., Volume 47 (2015), pp. 54-60

[36] Yang, X.-J.; Baleanu, D.; Srivastava, H. M. Local fractional integral transforms and their applications, Elsevier/Academic Press, Amsterdam, 2016

[37] Yang, X.-J.; Machado, J. T.; Hristov, J. Nonlinear dynamics for local fractional Burgers' equation arising in fractal ow, Nonlinear Dyn., Volume 84 (2015), pp. 3-7

[38] Yang, X.-J.; Srivastava, H. M. An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives, Commun. Nonlinear Sci. Numer. Simul., Volume 29 (2015), pp. 499-504

[39] Yang, A.-M.; Zhang, Y.-Z.; Long, Y. The Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar, Therm. Sci., Volume 17 (2013), pp. 707-713

[40] Zhang, Y.-Z. Initial boundary value problem for fractal heat equation in the semi-infinite region by Yang-Laplace transform, Therm. Sci., Volume 18 (2014), pp. 677-681

Cité par Sources :