Voir la notice de l'article provenant de la source International Scientific Research Publications
Yang, Xiao-Jun 1 ; Machado, J. A. Tenreiro 2 ; Baleanu, Dumitru 3 ; Gao, Feng 1
@article{JNSA_2016_9_10_a8, author = {Yang, Xiao-Jun and Machado, J. A. Tenreiro and Baleanu, Dumitru and Gao, Feng}, title = {A new numerical technique for local fractional diffusion equation in fractal heat transfer}, journal = {Journal of nonlinear sciences and its applications}, pages = {5621-5628}, publisher = {mathdoc}, volume = {9}, number = {10}, year = {2016}, doi = {10.22436/jnsa.009.10.09}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.09/} }
TY - JOUR AU - Yang, Xiao-Jun AU - Machado, J. A. Tenreiro AU - Baleanu, Dumitru AU - Gao, Feng TI - A new numerical technique for local fractional diffusion equation in fractal heat transfer JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 5621 EP - 5628 VL - 9 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.09/ DO - 10.22436/jnsa.009.10.09 LA - en ID - JNSA_2016_9_10_a8 ER -
%0 Journal Article %A Yang, Xiao-Jun %A Machado, J. A. Tenreiro %A Baleanu, Dumitru %A Gao, Feng %T A new numerical technique for local fractional diffusion equation in fractal heat transfer %J Journal of nonlinear sciences and its applications %D 2016 %P 5621-5628 %V 9 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.09/ %R 10.22436/jnsa.009.10.09 %G en %F JNSA_2016_9_10_a8
Yang, Xiao-Jun; Machado, J. A. Tenreiro; Baleanu, Dumitru; Gao, Feng. A new numerical technique for local fractional diffusion equation in fractal heat transfer. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 10, p. 5621-5628. doi : 10.22436/jnsa.009.10.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.09/
[1] A fractional calculus of variations for multiple integrals with application to vibrating string, J. Math. Phys., Volume 51 (2010), pp. 1-12
[2] The combined Laplace transform-differential transform method for solving linear non-homogeneous PDEs, J. Math. Comput. Sci., Volume 2 (2012), pp. 690-701
[3] Models and numerical methods, World Sci., Volume 3 (2012), pp. 10-16
[4] Fractional dynamics and control, Springer, Berlin, 2012
[5] A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations, J. Comput. Phys., Volume 293 (2015), pp. 142-156
[6] Local fractional functional method for solving diffusion equations on Cantor sets, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-6
[7] A fractional calculus approach to the description of stress and strain localization in fractal media, Chaos Solitons Fractals, Volume 13 (2002), pp. 85-94
[8] Fractional dynamics, De Gruyter Open, Berlin, 2015
[9] Algorithms for the fractional calculus: a selection of numerical methods, Comput. Methods Appl. Mech. Engrg, Volume 194 (2005), pp. 743-773
[10] On nonlinear fractional Klein-Gordon equation, Signal Process., Volume 91 (2011), pp. 446-451
[11] Fractional calculus: integral and differential equations of fractional order, Fractals and fractional calculus in continuum mechanics, Udine, (1996), 223-276, CISM Courses and Lectures, Springer, Vienna, 1997
[12] Fractional diffusion: probability distributions and random walk models, Non extensive thermodynamics and physical applications, Villasimius, (2001), Phys. A, Volume 305 (2002), pp. 106-112
[13] A tutorial review on fractal spacetime and fractional calculus, Internat. J. Theoret. Phys., Volume 53 (2014), pp. 3698-3718
[14] Approximate solutions to fractional subdiffusion equations, Eur. Phys. J. Spec. Top., Volume 193 (2013), pp. 229-243
[15] Solving a system of nonlinear fractional partial differential equations using homotopy analysis method, Commun. Nonlinear Sci. Numer. Simul., Volume 14 (2009), pp. 1962-1969
[16] Theory and applications of fractional differential equations, North- Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 1997
[17] Local fractional Fokker-Planck equation, Phys. Rev. Lett., Volume 80 (1998), pp. 214-217
[18] The finite difference methods for fractional ordinary differential equations, Numer. Funct. Anal. Optim., Volume 34 (2013), pp. 149-179
[19] Time fractional advection-dispersion equation, J. Appl. Math. Comput., Volume 13 (2003), pp. 233-245
[20] Fractional calculus for nanoscale flow and heat transfer, Internat. J. Numer. Methods Heat Fluid Flow, Volume 24 (2014), pp. 1227-1250
[21] Reconstructive schemes for variational iteration method within Yang-Laplace transform with application to fractal heat conduction problem, Therm. Sci., Volume 17 (2013), pp. 715-721
[22] An operational method for solving fractional differential equations with the Caputo derivatives, Acta Math. Vietnam., Volume 24 (1999), pp. 207-233
[23] The exact solution of certain differential equations of fractional order by using operational calculus, Comput. Math. Appl., Volume 29 (1995), pp. 73-85
[24] Fractional order control of unstable processes: the magnetic levitation study case, Nonlinear Dyn., Volume 80 (2014), pp. 1761-1772
[25] A generalized differential transform method for linear partial differential equations of fractional order, Appl. Math. Lett., Volume 21 (2008), pp. 194-199
[26] Fractional calculus for scientists and engineers, Lecture Notes in Electrical Engineering, Springer, Dordrecht, 2011
[27] Matrix approach to discrete fractional calculus. II. Partial fractional differential equations, J. Comput. Phys., Volume 228 (2009), pp. 3137-3153
[28] Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results, Appl. Mech. Rev., Volume 63 (2010), pp. 1-52
[29] Variational iteration method for the time-fractional Fornberg-Whitham equation, Comput. Math. Appl., Volume 63 (2012), pp. 1382-1388
[30] Fractional integrals and derivatives, Theory and applications, Edited and with a foreword by S. M. Nikolskiĭ, Translated from the 1987 Russian original, Revised by the authors, Gordon and Breach Science Publishers, Yverdon, 1993
[31] Analytical approximate solutions for nonlinear fractional differential equations, Appl. Math. Comput., Volume 131 (2002), pp. 517-529
[32] Implicit local radial basis function method for solving two-dimensional time fractional diffusion equations, Therm. Sci., Volume 19 (2015), pp. 59-67
[33] Fractional diffusion and Lévy stable processes, Phys. Rev. E, Volume 55 (1997), pp. 99-106
[34] Advanced local fractional calculus and its applications, World Sci., New York, 2012
[35] Local fractional similarity solution for the diffusion equation defined on Cantor sets, Appl. Math. Lett., Volume 47 (2015), pp. 54-60
[36] Local fractional integral transforms and their applications, Elsevier/Academic Press, Amsterdam, 2016
[37] Nonlinear dynamics for local fractional Burgers' equation arising in fractal ow, Nonlinear Dyn., Volume 84 (2015), pp. 3-7
[38] An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives, Commun. Nonlinear Sci. Numer. Simul., Volume 29 (2015), pp. 499-504
[39] The Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar, Therm. Sci., Volume 17 (2013), pp. 707-713
[40] Initial boundary value problem for fractal heat equation in the semi-infinite region by Yang-Laplace transform, Therm. Sci., Volume 18 (2014), pp. 677-681
Cité par Sources :