Bifurcations of twisted double homoclinic loops with resonant condition :
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 10, p. 5579-5620 Cet article a éte moissonné depuis la source International Scientific Research Publications

Voir la notice de l'article

In this paper, the bifurcation problems of twisted double homoclinic loops with resonant condition are studied for (m + n)-dimensional nonlinear dynamic systems. In the small tubular neighborhoods of the homoclinic orbits, the foundational solutions of the linear variational systems are selected as the local coordinate systems. The Poincaré maps are constructed by using the composition of two maps, one is in the small tubular neighborhood of the homoclinic orbit, and another is in the small neighborhood of the equilibrium point of system. By the analysis of bifurcation equations, the existence, uniqueness and existence regions of the large homoclinic loops, large periodic orbits are obtained, respectively. Moreover, the corresponding bifurcation diagrams are given.

DOI : 10.22436/jnsa.009.10.08
Classification : 34C23, 34C37, 34C05
Keywords: Double homoclinic loops, twisted, resonance, bifurcation, higher dimensional system.

Jin, Yinlai 1 ; Zhu, Man 2 ; Li, Feng 1 ; Xie, Dandan 2 ; Zhang, Nana 2

1 School of Science, Linyi University, Linyi, Shandong, 276005, China
2 School of Science, Linyi University, Linyi, Shandong, 276005, China;School of Mathematical Sciences, Shandong Normal University, Jinan, 250014, China
@article{10_22436_jnsa_009_10_08,
     author = {Jin, Yinlai and Zhu, Man and Li, Feng and Xie, Dandan and Zhang, Nana},
     title = {Bifurcations of twisted double homoclinic loops with resonant condition},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5579-5620},
     year = {2016},
     volume = {9},
     number = {10},
     doi = {10.22436/jnsa.009.10.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.08/}
}
TY  - JOUR
AU  - Jin, Yinlai
AU  - Zhu, Man
AU  - Li, Feng
AU  - Xie, Dandan
AU  - Zhang, Nana
TI  - Bifurcations of twisted double homoclinic loops with resonant condition
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5579
EP  - 5620
VL  - 9
IS  - 10
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.08/
DO  - 10.22436/jnsa.009.10.08
LA  - en
ID  - 10_22436_jnsa_009_10_08
ER  - 
%0 Journal Article
%A Jin, Yinlai
%A Zhu, Man
%A Li, Feng
%A Xie, Dandan
%A Zhang, Nana
%T Bifurcations of twisted double homoclinic loops with resonant condition
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5579-5620
%V 9
%N 10
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.08/
%R 10.22436/jnsa.009.10.08
%G en
%F 10_22436_jnsa_009_10_08
Jin, Yinlai; Zhu, Man; Li, Feng; Xie, Dandan; Zhang, Nana. Bifurcations of twisted double homoclinic loops with resonant condition. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 10, p. 5579-5620. doi: 10.22436/jnsa.009.10.08

[1] Chow, S.-N.; Deng, B.; Fiedler, B. Homoclinic bifurcation at resonant eigenvalues, J. Dynam. Differential Equations, Volume 2 (1990), pp. 177-244

[2] Guckenheimer, J.; Holmes, P. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Applied Mathematical Sciences, Springer-Verlag, New York, 1983

[3] Han, M. A.; Luo, D. J.; Zhu, D. M. The uniqueness of limit cycles bifurcating from a singular closed orbit (I), Acta Math. Sinica (Chin. Ser.), Volume 35 (1992), pp. 407-417

[4] Huang, X.; Wang, L. Y.; Jin, Y. L. Stability of homoclinic loops to a saddle-focus in arbitrarily finite dimensional spaces, (Chinese), Chinese Ann. Math. Ser. A, Volume 30 (2009), pp. 563-574

[5] Jin, Y. L. Bifurcations of twisted homoclinic loops for degenerated cases, Appl. Math. J. Chinese Univ. Ser. B, Volume 18 (2003), pp. 186-192

[6] Jin, Y. L.; Li, F.; Xu, H.; Li, J.; Zhang, L. Q.; Ding, B. Y. Bifurcations and stability of nondegenerated homoclinic loops for higher dimensional systems, Comput. Math. Methods Med., Volume 2013 (2013), pp. 1-9

[7] Jin, Y. L.; Xu, H.; Gao, Y. R.; Zhao, X.; Xie, D. D. Bifurcations of resonant double homoclinic loops for higher dimensional systems, J. Math. Computer Sci., Volume 16 (2016), pp. 165-177

[8] Jin, Y. L.; Zhu, D. M. Degenerated homoclinic bifurcations with higher dimensions, Chinese Ann. Math. Ser. B, Volume 21 (2000), pp. 201-210

[9] Jin, Y. L.; Zhu, D. M. Bifurcations of rough heteroclinic loops with three saddle points, Acta Math. Sin. (Engl. Ser.), Volume 18 (2002), pp. 199-208

[10] Jin, Y. L.; Zhu, D. M. Bifurcations of rough heteroclinic loops with two saddle points, Sci. China Ser. A, Volume 46 (2003), pp. 459-468

[11] Jin, Y. L.; Zhu, D. M. Twisted bifurcations and stability of homoclinic loop with higher dimensions, (Chinese) translated from Appl. Math. Mech., 25 (2004), 1076-1082, Appl. Math. Mech. (English Ed.), Volume 25 (2004), pp. 1176-1183

[12] Jin, Y. L.; Zhu, D. M. Bifurcations of fine 3-point-loop in higher dimensional space, Acta Math. Sin. (Engl. Ser.), Volume 21 (2005), pp. 39-52

[13] Jin, Y. L.; Zhu, X. W.; Guo, Z.; Xu, H.; Zhang, L. Q.; Ding, B. Y. Bifurcations of nontwisted heteroclinic loop with resonant eigenvalues, Sci. World J., Volume 2014 (2014), pp. 1-8

[14] Jin, Y. L.; Zhu, D. M.; Zheng, Q. G. Bifurcations of rough 3-point-loop with higher dimensions, Chinese Ann. Math. Ser. B, Volume 24 (2003), pp. 85-96

[15] Kovačić, G.; Wiggins, S. Orbits homoclinic to resonance with an application to chaos in a model of the forced and damped sine-Gordon equation, Phys. D, Volume 57 (1992), pp. 185-225

[16] Liu, X. B.; Zhu, D. M. On the stability of homoclinic loops with higher dimension, Discrete Contin. Dyn. Syst. Ser. B, Volume 17 (2012), pp. 915-932

[17] Lu, Q. Y. Codimension 2 bifurcation of twisted double homoclinic loops, Comput. Math. Appl., Volume 57 (2009), pp. 1127-1141

[18] Luo, D. J.; Wang, X.; Zhu, D. M.; Han, M. A. Bifurcation theory and methods of dynamical systems, Advanced Series in Dynamical Systems, World Scientific, Singapore, 1997

[19] Palmer, K. J. Exponential dichotomies and transversal homoclinic points, J. Differential Equations, Volume 55 (1984), pp. 225-256

[20] Wiggins, S. Global bifurcations and chaos, Analytical methods, Applied Mathematical Sciences, Springer-Verlag, New York, 1988

[21] Wiggins, S. Introduction to applied nonlinear dynamical systems and chaos, Second edition, Texts in Applied Mathematics, Springer-Verlag, New York, 2003

[22] Zhang, W. P.; Zhu, D. M. Codimension 2 bifurcations of double homoclinic loops, Chaos Solitons Fractals, Volume 39 (2009), pp. 295-303

[23] Zhu, D. M. Problems in homoclinic bifurcation with higher dimensions, Acta Math. Sinica (N.S.), Volume 14 (1998), pp. 341-352

[24] Zhu, D. M.; Xia, Z. H. Bifurcations of heteroclinic loops, Sci. China Ser. A, Volume 41 (1998), p. 837-484

Cité par Sources :