Common fixed point theorems in Menger PMT--spaces with applications
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 10, p. 5570-5578.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we introduce the concept of Menger PMT-spaces. Further, we prove common fixed point theorems in a complete Menger probabilistic metric type space and, by using the main result, we give applications on the existence and uniqueness of a solution for a class of integral equations.
DOI : 10.22436/jnsa.009.10.07
Classification : 54H25, 47H10, 54E70
Keywords: Nonlinear probabilistic contractive mapping, complete probabilistic metric type space, Menger space, fixed point theorem, integral equation.

Cho, Yeol Je 1 ; Yang, Young-Oh 2

1 Department of Mathematics Education and the RINS, Gyeongsang National University, Jinju 660-701, Korea;Center for General Education, China Medical University, Taichung, 40402, Taiwan
2 Department of Mathematics, Jeju National University, Jeju 690-756, Korea
@article{JNSA_2016_9_10_a6,
     author = {Cho, Yeol Je and Yang, Young-Oh},
     title = {Common fixed point theorems in {Menger} {PMT--spaces} with applications},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5570-5578},
     publisher = {mathdoc},
     volume = {9},
     number = {10},
     year = {2016},
     doi = {10.22436/jnsa.009.10.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.07/}
}
TY  - JOUR
AU  - Cho, Yeol Je
AU  - Yang, Young-Oh
TI  - Common fixed point theorems in Menger PMT--spaces with applications
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5570
EP  - 5578
VL  - 9
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.07/
DO  - 10.22436/jnsa.009.10.07
LA  - en
ID  - JNSA_2016_9_10_a6
ER  - 
%0 Journal Article
%A Cho, Yeol Je
%A Yang, Young-Oh
%T Common fixed point theorems in Menger PMT--spaces with applications
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5570-5578
%V 9
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.07/
%R 10.22436/jnsa.009.10.07
%G en
%F JNSA_2016_9_10_a6
Cho, Yeol Je; Yang, Young-Oh. Common fixed point theorems in Menger PMT--spaces with applications. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 10, p. 5570-5578. doi : 10.22436/jnsa.009.10.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.07/

[1] Alsina, C.; Schweizer, B.; Sklar, A. On the definition of a probabilistic normed space, Aequationes Math., Volume 46 (1993), pp. 91-98

[2] Alsina, C.; Schweizer, B.; Sklar, A. Continuity properties of probabilistic norms, J. Math. Anal. Appl., Volume 208 (1997), pp. 446-452

[3] Bharucha-Reid, A. T. Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc., Volume 82 (1976), pp. 641-657

[4] Chang, S.-S.; Cho, Y. J.; Kang, S. M. Nonlinear operator theory in probabilistic metric spaces, Nova Science Publishers, Inc., Huntington, 2001

[5] Fang, J. X. On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems, Volume 46 (1992), pp. 107-113

[6] Kada, O.; Suzuki, T.; Takahashi, W. Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon., Volume 44 (1996), pp. 381-391

[7] Khamsi, M. A.; Kreinovich, V. Y. Fixed point theorems for dissipative mappings in complete probabilistic metric spaces, Math. Japon., Volume 44 (1996), pp. 513-520

[8] O'Regan, D.; Saadati, R. Nonlinear contraction theorems in probabilistic spaces, Appl. Math. Comput., Volume 195 (2008), pp. 86-93

[9] Saadati, R.; O'Regan, D.; Vaezpour, S. M.; Kim, J. K. Generalized distance and common fixed point theorems in Menger probabilistic metric spaces, Bull. Iranian Math. Soc., Volume 35 (2009), pp. 97-117

[10] Saadati, R.; Vaezpour, S. M. Linear operators in finite dimensional probabilistic normed spaces, J. Math. Anal. Appl., Volume 346 (2008), pp. 446-450

[11] Schweizer, B.; Sklar, A. Probabilistic metric spaces, North-Holland Series in Probability and Applied Mathematics, North-Holland Publishing Co., New York, 1983

[12] Schweizer, B.; Sklar, A.; Throp, E. The metrization of statistical metric spaces, Pacific J. Math., Volume 10 (1960), pp. 673-675

[13] Šerstnev, A. N. The notion of random normed space, (Russian) Dokl. Akad. Nauk SSSR, 149 (1963), 280-283, English translation in Soviet Math. Dokl., Volume 4 (1963), pp. 388-390

Cité par Sources :