Voir la notice de l'article provenant de la source International Scientific Research Publications
Cho, Yeol Je 1 ; Yang, Young-Oh 2
@article{JNSA_2016_9_10_a6, author = {Cho, Yeol Je and Yang, Young-Oh}, title = {Common fixed point theorems in {Menger} {PMT--spaces} with applications}, journal = {Journal of nonlinear sciences and its applications}, pages = {5570-5578}, publisher = {mathdoc}, volume = {9}, number = {10}, year = {2016}, doi = {10.22436/jnsa.009.10.07}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.07/} }
TY - JOUR AU - Cho, Yeol Je AU - Yang, Young-Oh TI - Common fixed point theorems in Menger PMT--spaces with applications JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 5570 EP - 5578 VL - 9 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.07/ DO - 10.22436/jnsa.009.10.07 LA - en ID - JNSA_2016_9_10_a6 ER -
%0 Journal Article %A Cho, Yeol Je %A Yang, Young-Oh %T Common fixed point theorems in Menger PMT--spaces with applications %J Journal of nonlinear sciences and its applications %D 2016 %P 5570-5578 %V 9 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.07/ %R 10.22436/jnsa.009.10.07 %G en %F JNSA_2016_9_10_a6
Cho, Yeol Je; Yang, Young-Oh. Common fixed point theorems in Menger PMT--spaces with applications. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 10, p. 5570-5578. doi : 10.22436/jnsa.009.10.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.07/
[1] On the definition of a probabilistic normed space, Aequationes Math., Volume 46 (1993), pp. 91-98
[2] Continuity properties of probabilistic norms, J. Math. Anal. Appl., Volume 208 (1997), pp. 446-452
[3] Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc., Volume 82 (1976), pp. 641-657
[4] Nonlinear operator theory in probabilistic metric spaces, Nova Science Publishers, Inc., Huntington, 2001
[5] On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems, Volume 46 (1992), pp. 107-113
[6] Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon., Volume 44 (1996), pp. 381-391
[7] Fixed point theorems for dissipative mappings in complete probabilistic metric spaces, Math. Japon., Volume 44 (1996), pp. 513-520
[8] Nonlinear contraction theorems in probabilistic spaces, Appl. Math. Comput., Volume 195 (2008), pp. 86-93
[9] Generalized distance and common fixed point theorems in Menger probabilistic metric spaces, Bull. Iranian Math. Soc., Volume 35 (2009), pp. 97-117
[10] Linear operators in finite dimensional probabilistic normed spaces, J. Math. Anal. Appl., Volume 346 (2008), pp. 446-450
[11] Probabilistic metric spaces, North-Holland Series in Probability and Applied Mathematics, North-Holland Publishing Co., New York, 1983
[12] The metrization of statistical metric spaces, Pacific J. Math., Volume 10 (1960), pp. 673-675
[13] The notion of random normed space, (Russian) Dokl. Akad. Nauk SSSR, 149 (1963), 280-283, English translation in Soviet Math. Dokl., Volume 4 (1963), pp. 388-390
Cité par Sources :