Voir la notice de l'article provenant de la source International Scientific Research Publications
Chang, Shih-Sen 1 ; Wu, Ding Ping 2 ; Wang, Lin 3 ; Wang, Gang 3
@article{JNSA_2016_9_10_a5, author = {Chang, Shih-Sen and Wu, Ding Ping and Wang, Lin and Wang, Gang}, title = {Proximal point algorithms involving fixed point of nonspreading-type multivalued mappings in {Hilbert} spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {5561-5569}, publisher = {mathdoc}, volume = {9}, number = {10}, year = {2016}, doi = {10.22436/jnsa.009.10.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.06/} }
TY - JOUR AU - Chang, Shih-Sen AU - Wu, Ding Ping AU - Wang, Lin AU - Wang, Gang TI - Proximal point algorithms involving fixed point of nonspreading-type multivalued mappings in Hilbert spaces JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 5561 EP - 5569 VL - 9 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.06/ DO - 10.22436/jnsa.009.10.06 LA - en ID - JNSA_2016_9_10_a5 ER -
%0 Journal Article %A Chang, Shih-Sen %A Wu, Ding Ping %A Wang, Lin %A Wang, Gang %T Proximal point algorithms involving fixed point of nonspreading-type multivalued mappings in Hilbert spaces %J Journal of nonlinear sciences and its applications %D 2016 %P 5561-5569 %V 9 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.06/ %R 10.22436/jnsa.009.10.06 %G en %F JNSA_2016_9_10_a5
Chang, Shih-Sen; Wu, Ding Ping; Wang, Lin; Wang, Gang. Proximal point algorithms involving fixed point of nonspreading-type multivalued mappings in Hilbert spaces. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 10, p. 5561-5569. doi : 10.22436/jnsa.009.10.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.06/
[1] Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal., Volume 8 (2007), pp. 61-79
[2] Gradient ows in metric spaces and in the space of probability measures, Second edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008
[3] Firmly nonexpansive mappings in classes of geodesic spaces, Trans. Amer. Math. Soc., Volume 366 (2014), pp. 4299-4322
[4] The proximal point algorithm in metric spaces, Israel J. Math., Volume 194 (2013), pp. 689-701
[5] A proximal point algorithm converging strongly for general errors, Optim. Lett., Volume 4 (2010), pp. 635-641
[6] Shrinking projection methods for a split equilibrium problem and a nonspreading-type multivalued mapping, J. Nonlinear Sci. Appl. ((in press))
[7] Proximal point algorithms involving fixed points of nonexpansive mappings in CAT(0) spaces, Fixed Point Theory and Appl., Volume 2015 (2015), pp. 1-13
[8] On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim., Volume 29 (1991), pp. 403-419
[9] Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 957-961
[10] Convex functionals and generalized harmonic maps into spaces of nonpositive curvature, Comment. Math. Helv., Volume 70 (1995), pp. 659-673
[11] Approximating solutions of maximal monotone operators in Hilbert spaces, J. Approx. Theory, Volume 106 (2000), pp. 226-240
[12] Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces, SIAM J. Optim., Volume 19 (2008), pp. 824-835
[13] Convergence of generalized proximal point algorithms, Commun. Pure Appl. Anal., Volume 3 (2004), pp. 791-808
[14] Régularisation d'inéquations variationnelles par approximations successives, (French) Rev. Franaise Informat. Recherche Opérationnelle, Volume 4 (1970), pp. 154-158
[15] Monotone operators and the proximal point algorithm, SIAM J. Control Optimization, Volume 14 (1976), pp. 877-898
Cité par Sources :