Proximal point algorithms involving fixed point of nonspreading-type multivalued mappings in Hilbert spaces
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 10, p. 5561-5569.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, a new modified proximal point algorithm involving fixed point of nonspreading-type multivalued mappings in Hilbert spaces is proposed. Under suitable conditions, some weak convergence and strong convergence to a common element of the set of minimizers of a convex function and the set of fixed points of the nonspreading-type multivalued mappings in Hilbert space are proved. The presented results in the paper are new.
DOI : 10.22436/jnsa.009.10.06
Classification : 47J05, 47H09
Keywords: Convex minimization problem, resolvent identity, proximal point algorithm, weak and strong convergence theorem, nonspreading-type multivalued mapping.

Chang, Shih-Sen 1 ; Wu, Ding Ping 2 ; Wang, Lin 3 ; Wang, Gang 3

1 Center for General Educatin, China Medical University, Taichung 40402, Taiwan
2 School of Applied Mathematics, Chengdu University of Information Technology Chengsu, Sichuan 610103, China
3 College of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan 650221, China
@article{JNSA_2016_9_10_a5,
     author = {Chang, Shih-Sen and Wu, Ding Ping and Wang, Lin and Wang, Gang},
     title = {Proximal point algorithms involving fixed point of nonspreading-type multivalued mappings in {Hilbert} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5561-5569},
     publisher = {mathdoc},
     volume = {9},
     number = {10},
     year = {2016},
     doi = {10.22436/jnsa.009.10.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.06/}
}
TY  - JOUR
AU  - Chang, Shih-Sen
AU  - Wu, Ding Ping
AU  - Wang, Lin
AU  - Wang, Gang
TI  - Proximal point algorithms involving fixed point of nonspreading-type multivalued mappings in Hilbert spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5561
EP  - 5569
VL  - 9
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.06/
DO  - 10.22436/jnsa.009.10.06
LA  - en
ID  - JNSA_2016_9_10_a5
ER  - 
%0 Journal Article
%A Chang, Shih-Sen
%A Wu, Ding Ping
%A Wang, Lin
%A Wang, Gang
%T Proximal point algorithms involving fixed point of nonspreading-type multivalued mappings in Hilbert spaces
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5561-5569
%V 9
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.06/
%R 10.22436/jnsa.009.10.06
%G en
%F JNSA_2016_9_10_a5
Chang, Shih-Sen; Wu, Ding Ping; Wang, Lin; Wang, Gang. Proximal point algorithms involving fixed point of nonspreading-type multivalued mappings in Hilbert spaces. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 10, p. 5561-5569. doi : 10.22436/jnsa.009.10.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.06/

[1] Agarwal, R. P.; O'Regan, D.; Sahu, D. R. Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal., Volume 8 (2007), pp. 61-79

[2] Ambrosio, L.; Gigli, N.; Savaré, G. Gradient ows in metric spaces and in the space of probability measures, Second edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008

[3] Ariza-Ruiz, D.; Leuştean, L.; Lóez, G. Firmly nonexpansive mappings in classes of geodesic spaces, Trans. Amer. Math. Soc., Volume 366 (2014), pp. 4299-4322

[4] Bačák, M. The proximal point algorithm in metric spaces, Israel J. Math., Volume 194 (2013), pp. 689-701

[5] Boikanyo, O. A.; Moroşanu, G. A proximal point algorithm converging strongly for general errors, Optim. Lett., Volume 4 (2010), pp. 635-641

[6] Cholamjiak, W. Shrinking projection methods for a split equilibrium problem and a nonspreading-type multivalued mapping, J. Nonlinear Sci. Appl. ((in press))

[7] Cholamjiak, P.; Abdou, A. A. N.; Cho, Y. J. Proximal point algorithms involving fixed points of nonexpansive mappings in CAT(0) spaces, Fixed Point Theory and Appl., Volume 2015 (2015), pp. 1-13

[8] Güler, O. On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim., Volume 29 (1991), pp. 403-419

[9] Halpern, B. Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 957-961

[10] Jost, J. Convex functionals and generalized harmonic maps into spaces of nonpositive curvature, Comment. Math. Helv., Volume 70 (1995), pp. 659-673

[11] Kamimura, S.; Takahashi, W. Approximating solutions of maximal monotone operators in Hilbert spaces, J. Approx. Theory, Volume 106 (2000), pp. 226-240

[12] Kohsaka, F.; Takahashi, W. Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces, SIAM J. Optim., Volume 19 (2008), pp. 824-835

[13] Marino, G.; Xu, H.-K. Convergence of generalized proximal point algorithms, Commun. Pure Appl. Anal., Volume 3 (2004), pp. 791-808

[14] Martinet, B. Régularisation d'inéquations variationnelles par approximations successives, (French) Rev. Franaise Informat. Recherche Opérationnelle, Volume 4 (1970), pp. 154-158

[15] Rockafellar, R. T. Monotone operators and the proximal point algorithm, SIAM J. Control Optimization, Volume 14 (1976), pp. 877-898

Cité par Sources :