Voir la notice de l'article provenant de la source International Scientific Research Publications
Felhi, Abdelbasset 1 ; Aydi, Hassen 2 ; Zhang, Dong 3
@article{JNSA_2016_9_10_a4, author = {Felhi, Abdelbasset and Aydi, Hassen and Zhang, Dong}, title = {Fixed points for \(\alpha\)-admissible contractive mappings via simulation functions}, journal = {Journal of nonlinear sciences and its applications}, pages = {5544-5560}, publisher = {mathdoc}, volume = {9}, number = {10}, year = {2016}, doi = {10.22436/jnsa.009.10.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.05/} }
TY - JOUR AU - Felhi, Abdelbasset AU - Aydi, Hassen AU - Zhang, Dong TI - Fixed points for \(\alpha\)-admissible contractive mappings via simulation functions JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 5544 EP - 5560 VL - 9 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.05/ DO - 10.22436/jnsa.009.10.05 LA - en ID - JNSA_2016_9_10_a4 ER -
%0 Journal Article %A Felhi, Abdelbasset %A Aydi, Hassen %A Zhang, Dong %T Fixed points for \(\alpha\)-admissible contractive mappings via simulation functions %J Journal of nonlinear sciences and its applications %D 2016 %P 5544-5560 %V 9 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.05/ %R 10.22436/jnsa.009.10.05 %G en %F JNSA_2016_9_10_a4
Felhi, Abdelbasset; Aydi, Hassen; Zhang, Dong. Fixed points for \(\alpha\)-admissible contractive mappings via simulation functions. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 10, p. 5544-5560. doi : 10.22436/jnsa.009.10.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.05/
[1] A generalized contraction principle with control functions on partial metric spaces, Comput. Math. Appl., Volume 63 (2012), pp. 716-719
[2] Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-10
[3] Nonlinear contractions involving simulation functions in a metric space with a partial order, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 1082-1094
[4] A Nadler-type fixed point theorem in metric-like spaces and applications, Miskolc Math. Notes, Volume accepted (2015)
[5] Fixed points of multivalued nonself almost contractions in metric-like spaces, Math. Sci. (Springer), Volume 9 (2015), pp. 103-108
[6] On fixed point results for \(\alpha\)-implicit contractions in quasi-metric spaces and consequences, Nonlinear Anal. Model. Control, Volume 21 (2016), pp. 40-56
[7] Fixed point results for generalized \(\alpha-\psi\)-contractions in metric-like spaces and applications, Electron. J. Differential Equations, Volume 2015 (2015), pp. 1-15
[8] On Ekeland's variational principle in partial metric spaces, Appl. Math. Inf. Sci., Volume 9 (2015), pp. 257-262
[9] Cyclic contractions and fixed points in dislocated metric spaces, Int. J. Math. Anal., Volume 7 (2013), pp. 403-411
[10] Dislocated topologies, J. Electr. Eng., Volume 51 (2000), pp. 3-7
[11] On \(\alpha-\psi\)-Meir-Keeler contractive mappings, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-12
[12] A new approach to the study of fixed point theory for simulation functions, Filomat, Volume 29 (2015), pp. 1189-1194
[13] Papers on general topology and applications, Flushing, NY, (1992), Ann. New York Acad. Sci., New York Acad. Sci., Volume 1994 (1994), pp. 183-197
[14] Some results on fixed points of \(\alpha-\psi\)-Ciric generalized multifunctions, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-10
[15] Fixed point results on metric and partial metric spaces via simulation functions, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 1059-1069
[16] Partial metrics, valuations, and domain theory, Papers on general topology and applications, Gorham, ME, (1995), 304-315, Ann. New York Acad. Sci., New York Acad. Sci., New York, 1996
[17] Fixed point theorems for \(\alpha-\psi\)-contractive type mappings, Nonlinear Anal., Volume 75 (2012), pp. 2154-2165
Cité par Sources :