Fixed points for $\alpha$-admissible contractive mappings via simulation functions
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 10, p. 5544-5560.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Based on concepts of $\alpha$-admissible mappings and simulation functions, we establish some fixed point results in the setting of metric-like spaces. We show that many known results in the literature are simple consequences of our obtained results. We also provide some concrete examples to illustrate the obtained results.
DOI : 10.22436/jnsa.009.10.05
Classification : 47H10, 54H25
Keywords: Metric-like, fixed point, simulation functions, \(\alpha\)-admissible mappings.

Felhi, Abdelbasset 1 ; Aydi, Hassen 2 ; Zhang, Dong 3

1 Department of Mathematics and Statistics, College of Sciences, King Faisal University, Hafouf, P. O. Box 400 Post code. 31982, Saudi Arabia
2 Department of Mathematics, College of Education of Jubail, University of Dammam, P. O.: 12020, Industrial Jubail 31961, Saudi Arabia;Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
3 School of Mathematical Sciences, Peking University, 100871, Beijing, China
@article{JNSA_2016_9_10_a4,
     author = {Felhi, Abdelbasset and Aydi, Hassen and Zhang, Dong},
     title = {Fixed points  for \(\alpha\)-admissible contractive mappings via simulation functions},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5544-5560},
     publisher = {mathdoc},
     volume = {9},
     number = {10},
     year = {2016},
     doi = {10.22436/jnsa.009.10.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.05/}
}
TY  - JOUR
AU  - Felhi, Abdelbasset
AU  - Aydi, Hassen
AU  - Zhang, Dong
TI  - Fixed points  for \(\alpha\)-admissible contractive mappings via simulation functions
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5544
EP  - 5560
VL  - 9
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.05/
DO  - 10.22436/jnsa.009.10.05
LA  - en
ID  - JNSA_2016_9_10_a4
ER  - 
%0 Journal Article
%A Felhi, Abdelbasset
%A Aydi, Hassen
%A Zhang, Dong
%T Fixed points  for \(\alpha\)-admissible contractive mappings via simulation functions
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5544-5560
%V 9
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.05/
%R 10.22436/jnsa.009.10.05
%G en
%F JNSA_2016_9_10_a4
Felhi, Abdelbasset; Aydi, Hassen; Zhang, Dong. Fixed points  for \(\alpha\)-admissible contractive mappings via simulation functions. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 10, p. 5544-5560. doi : 10.22436/jnsa.009.10.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.05/

[1] Abdeljawad, T.; Karapınar, E.; Taş, K. A generalized contraction principle with control functions on partial metric spaces, Comput. Math. Appl., Volume 63 (2012), pp. 716-719

[2] Amini-Harandi, A. Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-10

[3] Argoubi, H.; Samet, B.; Vetro, C. Nonlinear contractions involving simulation functions in a metric space with a partial order, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 1082-1094

[4] Aydi, H.; Felhi, A.; Karapınar, E.; Sahmim, S. A Nadler-type fixed point theorem in metric-like spaces and applications, Miskolc Math. Notes, Volume accepted (2015)

[5] Aydi, H.; Felhi, A.; Sahmim, S. Fixed points of multivalued nonself almost contractions in metric-like spaces, Math. Sci. (Springer), Volume 9 (2015), pp. 103-108

[6] Aydi, H.; Jellali, M.; Karapınar, E. On fixed point results for \(\alpha\)-implicit contractions in quasi-metric spaces and consequences, Nonlinear Anal. Model. Control, Volume 21 (2016), pp. 40-56

[7] Aydi, H.; Karapınar, E. Fixed point results for generalized \(\alpha-\psi\)-contractions in metric-like spaces and applications, Electron. J. Differential Equations, Volume 2015 (2015), pp. 1-15

[8] Aydi, H.; Karapınar, E.; Vetro, C. On Ekeland's variational principle in partial metric spaces, Appl. Math. Inf. Sci., Volume 9 (2015), pp. 257-262

[9] George, R.; Rajagopalan, R.; Vinayagam, S. Cyclic contractions and fixed points in dislocated metric spaces, Int. J. Math. Anal., Volume 7 (2013), pp. 403-411

[10] Hitzler, P.; Seda, A. K. Dislocated topologies, J. Electr. Eng., Volume 51 (2000), pp. 3-7

[11] Karapınar, E.; Kumam, P.; Salimi, P. On \(\alpha-\psi\)-Meir-Keeler contractive mappings, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-12

[12] Khojasteh, F.; Shukla, S.; Radenović, S. A new approach to the study of fixed point theory for simulation functions, Filomat, Volume 29 (2015), pp. 1189-1194

[13] Matthews, S. G.; topology, Partial metric Papers on general topology and applications, Flushing, NY, (1992), Ann. New York Acad. Sci., New York Acad. Sci., Volume 1994 (1994), pp. 183-197

[14] Mohammadi, B.; Rezapour, Sh.; Shahzad, N. Some results on fixed points of \(\alpha-\psi\)-Ciric generalized multifunctions, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-10

[15] Nastasi, A.; Vetro, P. Fixed point results on metric and partial metric spaces via simulation functions, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 1059-1069

[16] O'Neill, S. J. Partial metrics, valuations, and domain theory, Papers on general topology and applications, Gorham, ME, (1995), 304-315, Ann. New York Acad. Sci., New York Acad. Sci., New York, 1996

[17] Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for \(\alpha-\psi\)-contractive type mappings, Nonlinear Anal., Volume 75 (2012), pp. 2154-2165

Cité par Sources :