On the split equality common fixed point problem for quasi-nonexpansive multi-valued mappings in Banach spaces
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 10, p. 5536-5543.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The purpose of this paper is to study the split equality common fixed point problems of quasi-nonexpansive multi-valued mappings in the setting of Banach spaces. For solving this kind of problems, some new iterative algorithms are proposed. Under suitable conditions, some weak and strong convergence theorems for the sequences generated by the proposed algorithm are proved. The results presented in this paper are new which also improve and extend some recent results announced by some authors.
DOI : 10.22436/jnsa.009.10.04
Classification : 47J25, 47H09, 65K10
Keywords: Split equality problem, quasi-nonexpansive multi-valued mapping, weak convergence, strong convergence.

Tian, Xuejin 1 ; Wang, Lin 1 ; Ma, Zhaoli 2

1 College of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan, 650221, P. R. China
2 Department of General Education, The College of Arts and Sciences Yunnan Normal University, Kunming, Yunnan, 650222, P. R. China
@article{JNSA_2016_9_10_a3,
     author = {Tian, Xuejin and Wang, Lin and Ma, Zhaoli},
     title = {On the split equality common fixed point problem for quasi-nonexpansive  multi-valued mappings in {Banach} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5536-5543},
     publisher = {mathdoc},
     volume = {9},
     number = {10},
     year = {2016},
     doi = {10.22436/jnsa.009.10.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.04/}
}
TY  - JOUR
AU  - Tian, Xuejin
AU  - Wang, Lin
AU  - Ma, Zhaoli
TI  - On the split equality common fixed point problem for quasi-nonexpansive  multi-valued mappings in Banach spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5536
EP  - 5543
VL  - 9
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.04/
DO  - 10.22436/jnsa.009.10.04
LA  - en
ID  - JNSA_2016_9_10_a3
ER  - 
%0 Journal Article
%A Tian, Xuejin
%A Wang, Lin
%A Ma, Zhaoli
%T On the split equality common fixed point problem for quasi-nonexpansive  multi-valued mappings in Banach spaces
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5536-5543
%V 9
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.04/
%R 10.22436/jnsa.009.10.04
%G en
%F JNSA_2016_9_10_a3
Tian, Xuejin; Wang, Lin; Ma, Zhaoli. On the split equality common fixed point problem for quasi-nonexpansive  multi-valued mappings in Banach spaces. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 10, p. 5536-5543. doi : 10.22436/jnsa.009.10.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.04/

[1] Attouch, H.; Bolte, J.; Redont, P.; Soubeyran, A. Alternating proximal algorithms for weakly coupled convex minimization problems, Applications to dynamical games and PDE's, J. Convex Anal., Volume 15 (2008), pp. 485-506

[2] Byrne, C. Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Problems, Volume 18 (2002), pp. 441-453

[3] Censor, Y.; Bortfeld, T.; Martin, B.; Trofimov, A. A unified approach for inversion problems in intensity-modulated radiation therapy, Phys. Med. Biol., Volume 51 (2006), pp. 2353-2365

[4] Censor, Y.; Elfving, T. A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, Volume 8 (1994), pp. 221-239

[5] Censor, Y.; Elfving, T.; Kopf, N.; Bortfeld, T. The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Problems, Volume 21 (2005), pp. 2071-2084

[6] Censor, Y.; Motova, A.; Segal, A. Perturbed projections and subgradient projections for the multiple-sets split feasibility problem, J. Math. Anal. Appl., Volume 327 (2007), pp. 1244-1256

[7] Chang, S.-S.; Kim, J. K.; Cho, Y. J.; Sim, J. Y. Weak- and strong-convergence theorems of solutions to split feasibility problem for nonspreading type mapping in Hilbert spaces, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-12

[8] Chang, S.-S.; Wang, L.; Tang, Y. K.; Yang, L. The split common fixed point problem for total asymptotically strictly pseudocontractive mappings, J. Appl. Math., Volume 2012 (2012), pp. 1-13

[9] Cioranescu, I. Geometry of Banach spaces, duality mappings and nonlinear problems, Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1990

[10] Moudafi, A. The split common fixed-point problem for demicontractive mappings, Inverse Problems, Volume 26 (2010), pp. 1-6

[11] Moudafi, A. A note on the split common fixed-point problem for quasi-nonexpansive operators, Nonlinear Anal., Volume 74 (2011), pp. 4083-4087

[12] Moudafi, A. A relaxed alternating CQ-algorithm for convex feasibility problems, Nonlinear Anal., Volume 79 (2013), pp. 117-121

[13] Qu, B.; Xiu, N. H. A note on the CQ algorithm for the split feasibility problem, Inverse Problems, Volume 21 (2005), pp. 1655-1665

[14] Quan, J.; Chang, S.-S.; Zhang, X. Multiple-set split feasibility problems for \(\kappa\)-strictly pseudononspreading mapping in Hilbert spaces, Abstr. Appl. Anal., Volume 2013 (2013), pp. 1-5

[15] Tang, J. F.; Chang, S.-S.; Wang, L.; Wang, X. R. On the split common fixed point problem for strict pseudocontractive and asymptotically nonexpansive mappings in Banach spaces, J. Inequal. Appl., Volume 2015 (2015), pp. 1-11

[16] Wu, Y. J.; Chen, R. D.; Shi, L. Y. Split equality problem and multiple-sets split equality problem for quasi- nonexpansive multi-valued mappings, J. Inequal. Appl., Volume 2014 (2014), pp. 1-8

[17] Xu, H.-K. Inequalities in Banach spaces with applications, Nonlinear Anal., Volume 16 (1991), pp. 1127-1138

[18] Xu, H.-K. A variable Krasnoselskiĭ-Mann algorithm and the multiple-set split feasibility problem, Inverse Problems, Volume 22 (2006), pp. 2021-2034

[19] Yang, Q. Z. The relaxed CQ algorithm solving the split feasibility problem, Inverse Problems, Volume 20 (2004), pp. 1261-1266

[20] Zhang, X.-F.; Wang, L.; Ma, Z. L.; Qin, L. J. The strong convergence theorems for split common fixed point problem of asymptotically nonexpansive mappings in Hilbert spaces, J. Inequal. Appl., Volume 2015 (2015), pp. 1-11

Cité par Sources :