Voir la notice de l'article provenant de la source International Scientific Research Publications
Tian, Xuejin 1 ; Wang, Lin 1 ; Ma, Zhaoli 2
@article{JNSA_2016_9_10_a3, author = {Tian, Xuejin and Wang, Lin and Ma, Zhaoli}, title = {On the split equality common fixed point problem for quasi-nonexpansive multi-valued mappings in {Banach} spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {5536-5543}, publisher = {mathdoc}, volume = {9}, number = {10}, year = {2016}, doi = {10.22436/jnsa.009.10.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.04/} }
TY - JOUR AU - Tian, Xuejin AU - Wang, Lin AU - Ma, Zhaoli TI - On the split equality common fixed point problem for quasi-nonexpansive multi-valued mappings in Banach spaces JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 5536 EP - 5543 VL - 9 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.04/ DO - 10.22436/jnsa.009.10.04 LA - en ID - JNSA_2016_9_10_a3 ER -
%0 Journal Article %A Tian, Xuejin %A Wang, Lin %A Ma, Zhaoli %T On the split equality common fixed point problem for quasi-nonexpansive multi-valued mappings in Banach spaces %J Journal of nonlinear sciences and its applications %D 2016 %P 5536-5543 %V 9 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.04/ %R 10.22436/jnsa.009.10.04 %G en %F JNSA_2016_9_10_a3
Tian, Xuejin; Wang, Lin; Ma, Zhaoli. On the split equality common fixed point problem for quasi-nonexpansive multi-valued mappings in Banach spaces. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 10, p. 5536-5543. doi : 10.22436/jnsa.009.10.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.04/
[1] Alternating proximal algorithms for weakly coupled convex minimization problems, Applications to dynamical games and PDE's, J. Convex Anal., Volume 15 (2008), pp. 485-506
[2] Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Problems, Volume 18 (2002), pp. 441-453
[3] A unified approach for inversion problems in intensity-modulated radiation therapy, Phys. Med. Biol., Volume 51 (2006), pp. 2353-2365
[4] A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, Volume 8 (1994), pp. 221-239
[5] The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Problems, Volume 21 (2005), pp. 2071-2084
[6] Perturbed projections and subgradient projections for the multiple-sets split feasibility problem, J. Math. Anal. Appl., Volume 327 (2007), pp. 1244-1256
[7] Weak- and strong-convergence theorems of solutions to split feasibility problem for nonspreading type mapping in Hilbert spaces, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-12
[8] The split common fixed point problem for total asymptotically strictly pseudocontractive mappings, J. Appl. Math., Volume 2012 (2012), pp. 1-13
[9] Geometry of Banach spaces, duality mappings and nonlinear problems, Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1990
[10] The split common fixed-point problem for demicontractive mappings, Inverse Problems, Volume 26 (2010), pp. 1-6
[11] A note on the split common fixed-point problem for quasi-nonexpansive operators, Nonlinear Anal., Volume 74 (2011), pp. 4083-4087
[12] A relaxed alternating CQ-algorithm for convex feasibility problems, Nonlinear Anal., Volume 79 (2013), pp. 117-121
[13] A note on the CQ algorithm for the split feasibility problem, Inverse Problems, Volume 21 (2005), pp. 1655-1665
[14] Multiple-set split feasibility problems for \(\kappa\)-strictly pseudononspreading mapping in Hilbert spaces, Abstr. Appl. Anal., Volume 2013 (2013), pp. 1-5
[15] On the split common fixed point problem for strict pseudocontractive and asymptotically nonexpansive mappings in Banach spaces, J. Inequal. Appl., Volume 2015 (2015), pp. 1-11
[16] Split equality problem and multiple-sets split equality problem for quasi- nonexpansive multi-valued mappings, J. Inequal. Appl., Volume 2014 (2014), pp. 1-8
[17] Inequalities in Banach spaces with applications, Nonlinear Anal., Volume 16 (1991), pp. 1127-1138
[18] A variable Krasnoselskiĭ-Mann algorithm and the multiple-set split feasibility problem, Inverse Problems, Volume 22 (2006), pp. 2021-2034
[19] The relaxed CQ algorithm solving the split feasibility problem, Inverse Problems, Volume 20 (2004), pp. 1261-1266
[20] The strong convergence theorems for split common fixed point problem of asymptotically nonexpansive mappings in Hilbert spaces, J. Inequal. Appl., Volume 2015 (2015), pp. 1-11
Cité par Sources :