Voir la notice de l'article provenant de la source International Scientific Research Publications
Fu, Chun-Ru 1 ; Wang, Dongsheng 2 ; Shi, Huan-Nan 3
@article{JNSA_2016_9_10_a1, author = {Fu, Chun-Ru and Wang, Dongsheng and Shi, Huan-Nan}, title = {Schur-Convexity for {Lehmer} mean of n variables}, journal = {Journal of nonlinear sciences and its applications}, pages = {5510-5520}, publisher = {mathdoc}, volume = {9}, number = {10}, year = {2016}, doi = {10.22436/jnsa.009.10.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.02/} }
TY - JOUR AU - Fu, Chun-Ru AU - Wang, Dongsheng AU - Shi, Huan-Nan TI - Schur-Convexity for Lehmer mean of n variables JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 5510 EP - 5520 VL - 9 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.02/ DO - 10.22436/jnsa.009.10.02 LA - en ID - JNSA_2016_9_10_a1 ER -
%0 Journal Article %A Fu, Chun-Ru %A Wang, Dongsheng %A Shi, Huan-Nan %T Schur-Convexity for Lehmer mean of n variables %J Journal of nonlinear sciences and its applications %D 2016 %P 5510-5520 %V 9 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.02/ %R 10.22436/jnsa.009.10.02 %G en %F JNSA_2016_9_10_a1
Fu, Chun-Ru; Wang, Dongsheng; Shi, Huan-Nan. Schur-Convexity for Lehmer mean of n variables. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 10, p. 5510-5520. doi : 10.22436/jnsa.009.10.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.02/
[1] Über Lehmers Mittelwertfamilie, (German) [On Lehmer's family of mean values], Elem. Math., Volume 43 (1988), pp. 50-54
[2] Bestmögliche Abschätzungen für spezielle Mittelwerte, (German) [Best possible estimates for special mean values], Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., Volume 23 (1993), pp. 331-346
[3] A class of mean value functions, Amer. Math. Monthly, Volume 57 (1950), pp. 1-6
[4] The Schur multiplicative and harmonic convexities of the complete symmetric function , Math. Nachr., Volume 284 (2011), pp. 653-663
[5] Necessary and sufficient conditions for the Schur harmonic convexity of the generalized Muirhead mean, Proc. A. Razmadze Math. Inst., Volume 152 (2010), pp. 19-27
[6] Necessary and sufficient conditions such that extended mean values are Schur-convex or Schur-concave, J. Math. Kyoto Univ., Volume 48 (2008), pp. 229-238
[7] The Schur geometrical convexity of the extended mean values, J. Convex Anal., Volume 15 (2008), pp. 707-718
[8] Schur-convexity of the generalized Heronian means involving two positive numbers, Taiwanese J. Math., Volume 15 (2011), pp. 2721-2731
[9] The Schur convexity for the generalized Muirhead mean, J. Math. Inequal., Volume 8 (2014), pp. 855-862
[10] Series expansions of means, J. Math. Anal. Appl., Volume 101 (1984), pp. 611-621
[11] The Schur-convexity and the Schur-geometric concavity of Lehme means, (Chinese) Math. Pract. Theory, Volume 39 (2009), pp. 183-188
[12] The best possible Lehmer mean bounds for a convex combination of logarithmic and harmonic means , Int. Math. Forum, Volume 8 (2013), pp. 1539-1551
[13] On the compounding of certain means, J. Math. Anal. Appl., Volume 36 (1971), pp. 183-200
[14] Remark on inequalities between Hölder and Lehmer means, J. Math. Anal. Appl., Volume 247 (2000), pp. 309-313
[15] Schur geometric convexity for ratio of difference of means, J. Sci. Res. Reports, Volume 3 (2014), pp. 1211-1219
[16] Shur convexity of Gnan mean for positive arguments, Notes Number Theory Discrete Math., Volume 17 (2011), pp. 37-41
[17] Inequalities: theory of majorization and its applications, Mathematics in Science and Engineering, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979
[18] The Schur-harmonic-convexity of dual form of the Hamy symmetric function, Mat. Vesnik, Volume 62 (2010), pp. 37-46
[19] Schur harmonic convexity of Stolarsky extended mean values, Scientia Magna, Volume 9 (2013), pp. 18-29
[20] Convexity according to the geometric mean, Math. Inequal. Appl., Volume 3 (2000), pp. 155-167
[21] Inequalities for sums of powers, J. Math. Anal. Appl., Volume 131 (1988), pp. 265-270
[22] Notes on the Schur-convexity of the extended mean values, Taiwanese J. Math., Volume 9 (2005), pp. 411-420
[23] Two sharp inequalities for Lehmer mean, identric mean and logarithmic mean, J. Math. Inequal., Volume 5 (2011), pp. 301-306
[24] The Schur-convexity of Stolarsky and Gini means, Banach J. Math. Anal., Volume 1 (2007), pp. 212-215
[25] Schur-convexity and Schur-geometrically concavity of Gini means, Comput. Math. Appl., Volume 57 (2009), pp. 266-274
[26] Hölder means, Lehmer means, and \(x^{-1} \log \cosh x\) , J. Math. Anal. Appl., Volume 202 (1996), pp. 810-818
[27] Foundations of Majorization Inequalities, (in Chinese) Beijing Normal Univ. Press, Beijing, China, 1990
[28] A sharp double inequality between the Lehmer and arithmetic-geometric means, Pac. J. Appl. Math., Volume 4 (2012), pp. 1-25
[29] Sharp bounds for seiffert means in terms of Lehmer means, J. Math. Inequal., Volume 4 (2010), pp. 581-586
[30] Rediscovering a family of means, Math. Intelligencer, Volume 24 (2002), pp. 58-65
[31] Convexity of weighted Stolarsky means, JIPAM. J. Inequal. Pure Appl. Math., Volume 7 (2006), pp. 1-6
[32] On Schur-convexity and Schur-geometric convexity of four-parameter family of means, Math. Inequal. Appl., Volume 14 (2011), pp. 897-903
[33] Schur-harmonic convexity for differences of some means, Analysis (Munich), Volume 32 (2012), pp. 263-270
[34] Schur-harmonic convexity for differences of some special means in two variables, J. Math. Inequal., Volume 8 (2014), pp. 321-330
[35] The Schur convexity of the weighted generalized logarithmic mean values according to harmonic mean, Int. J. Mod. Math., Volume 4 (2009), pp. 225-233
[36] The Schur harmonic convexity of Lehmer means, Int. Math. Forum, Volume 4 (2009), pp. 2009-2015
[37] The Schur multiplicative convexity of the generalized Muirhead mean values, Int. J. Funct. Anal. Oper. Theory Appl., Volume 1 (2009), pp. 1-8
[38] The Schur convexity of Gini mean values in the sense of harmonic mean, Acta Math. Sci. Ser. B Engl. Ed., Volume 31 (2011), pp. 1103-1112
[39] Necessary and sufficient conditions for the Schur harmonic convexity or concavity of the extended mean values, Rev. Un. Mat. Argentina, Volume 51 (2010), pp. 121-132
[40] Necessary and sufficient conditions for Schur geometrical convexity of the four-parameter homogeneous means, Abstr. Appl. Anal., Volume 2010 (2010), pp. 1-16
[41] Schur harmonic convexity of Gini means, Int. Math. Forum, Volume 6 (2011), pp. 747-762
[42] Schur power convexity of Stolarsky means, Publ. Math. Debrecen, Volume 80 (2012), pp. 43-66
[43] On Schur m-power convexity for ratios of some means, J. Math. Inequal., Volume 9 (2015), pp. 145-153
[44] Geometrically convex functions, (Chinese) Anhui University Press, Hefei, 2004
[45] Schur-Convexity of Generalized Heronian Mean, International Conference on Information Computing and Applications, Springer, Berlin, Heidelberg, Volume 244 (2011), pp. 25-33
Cité par Sources :