Schur-Convexity for Lehmer mean of n variables
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 10, p. 5510-5520.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Schur-convexity, Schur-geometric convexity and Schur-harmonic convexity for Lehmer mean of n variables are investigated, and some mean value inequalities of n variables are established.
DOI : 10.22436/jnsa.009.10.02
Classification : 26E60, 26D15, 26A51
Keywords: Schur convexity, Schur geometric convexity, Schur harmonic convexity, n variables Lehmer mean, majorization, inequalities.

Fu, Chun-Ru 1 ; Wang, Dongsheng 2 ; Shi, Huan-Nan 3

1 Basic courses department, Beijing Vocational College of Electronic Technology, Beijing100026, P. R. China
2 Applied college of science and technology, Beijing Union University, Beijing 102200, P. R. China
3 Department of Electronic Information, Teacher's College, Beijing Union University, Beijing City, 100011, P. R. China
@article{JNSA_2016_9_10_a1,
     author = {Fu, Chun-Ru and Wang, Dongsheng and Shi, Huan-Nan},
     title = {Schur-Convexity for {Lehmer} mean of n variables},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5510-5520},
     publisher = {mathdoc},
     volume = {9},
     number = {10},
     year = {2016},
     doi = {10.22436/jnsa.009.10.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.02/}
}
TY  - JOUR
AU  - Fu, Chun-Ru
AU  - Wang, Dongsheng
AU  - Shi, Huan-Nan
TI  - Schur-Convexity for Lehmer mean of n variables
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5510
EP  - 5520
VL  - 9
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.02/
DO  - 10.22436/jnsa.009.10.02
LA  - en
ID  - JNSA_2016_9_10_a1
ER  - 
%0 Journal Article
%A Fu, Chun-Ru
%A Wang, Dongsheng
%A Shi, Huan-Nan
%T Schur-Convexity for Lehmer mean of n variables
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5510-5520
%V 9
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.02/
%R 10.22436/jnsa.009.10.02
%G en
%F JNSA_2016_9_10_a1
Fu, Chun-Ru; Wang, Dongsheng; Shi, Huan-Nan. Schur-Convexity for Lehmer mean of n variables. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 10, p. 5510-5520. doi : 10.22436/jnsa.009.10.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.02/

[1] Alzer, H. Über Lehmers Mittelwertfamilie, (German) [On Lehmer's family of mean values], Elem. Math., Volume 43 (1988), pp. 50-54

[2] Alzer, H. Bestmögliche Abschätzungen für spezielle Mittelwerte, (German) [Best possible estimates for special mean values], Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., Volume 23 (1993), pp. 331-346

[3] E. F. Beckenbach A class of mean value functions, Amer. Math. Monthly, Volume 57 (1950), pp. 1-6

[4] Chu, Y.-M.; Wang, G.-D.; X.-H. Zhang The Schur multiplicative and harmonic convexities of the complete symmetric function , Math. Nachr., Volume 284 (2011), pp. 653-663

[5] Chu, Y.-M.; W.-F. Xia Necessary and sufficient conditions for the Schur harmonic convexity of the generalized Muirhead mean, Proc. A. Razmadze Math. Inst., Volume 152 (2010), pp. 19-27

[6] Chu, Y.-M.; Zhang, X.-M. Necessary and sufficient conditions such that extended mean values are Schur-convex or Schur-concave, J. Math. Kyoto Univ., Volume 48 (2008), pp. 229-238

[7] Chu, Y.-M.; Zhang, X. M.; G.-D. Wang The Schur geometrical convexity of the extended mean values, J. Convex Anal., Volume 15 (2008), pp. 707-718

[8] Fu, L.-L.; Xi, B.-Y.; Srivastava, H. M. Schur-convexity of the generalized Heronian means involving two positive numbers, Taiwanese J. Math., Volume 15 (2011), pp. 2721-2731

[9] Gong, W.-M.; Shen, H.; Y.-M. Chu The Schur convexity for the generalized Muirhead mean, J. Math. Inequal., Volume 8 (2014), pp. 855-862

[10] Gould, H. W.; Mays, M. E. Series expansions of means, J. Math. Anal. Appl., Volume 101 (1984), pp. 611-621

[11] Gu, C.; H. N. Shi The Schur-convexity and the Schur-geometric concavity of Lehme means, (Chinese) Math. Pract. Theory, Volume 39 (2009), pp. 183-188

[12] Guo, Z.-J.; Shen, X.-H.; Chu, Y.-M. The best possible Lehmer mean bounds for a convex combination of logarithmic and harmonic means , Int. Math. Forum, Volume 8 (2013), pp. 1539-1551

[13] Lehmer, D. H. On the compounding of certain means, J. Math. Anal. Appl., Volume 36 (1971), pp. 183-200

[14] Liu, Z. Remark on inequalities between Hölder and Lehmer means, J. Math. Anal. Appl., Volume 247 (2000), pp. 309-313

[15] Lokesha, V.; Kumar, N.; Nagaraja, K. M.; Padmanabhan, S. Schur geometric convexity for ratio of difference of means, J. Sci. Res. Reports, Volume 3 (2014), pp. 1211-1219

[16] Lokesha, V.; Nagaraja, K. M.; kumar, N.; Y.-D. Wu Shur convexity of Gnan mean for positive arguments, Notes Number Theory Discrete Math., Volume 17 (2011), pp. 37-41

[17] Marshall, A. W.; I. Olkin Inequalities: theory of majorization and its applications, Mathematics in Science and Engineering, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979

[18] Meng, J.-X.; Chu, Y.-M.; Tang, X.-M. The Schur-harmonic-convexity of dual form of the Hamy symmetric function, Mat. Vesnik, Volume 62 (2010), pp. 37-46

[19] Nagaraja, K. M.; Sahu, S. K. Schur harmonic convexity of Stolarsky extended mean values, Scientia Magna, Volume 9 (2013), pp. 18-29

[20] C. P. Niculescu Convexity according to the geometric mean, Math. Inequal. Appl., Volume 3 (2000), pp. 155-167

[21] Z. Páles Inequalities for sums of powers, J. Math. Anal. Appl., Volume 131 (1988), pp. 265-270

[22] Qi, F.; Sándor, J.; Dragomir, S. S.; A. Sofo Notes on the Schur-convexity of the extended mean values, Taiwanese J. Math., Volume 9 (2005), pp. 411-420

[23] Qiu, Y.-F.; Wang, M.-K.; Chu, Y.-M.; Wang, G.-D. Two sharp inequalities for Lehmer mean, identric mean and logarithmic mean, J. Math. Inequal., Volume 5 (2011), pp. 301-306

[24] Sándor, J. The Schur-convexity of Stolarsky and Gini means, Banach J. Math. Anal., Volume 1 (2007), pp. 212-215

[25] Shi, H.-N.; Jiang, Y.-M.; Jiang, W.-D. Schur-convexity and Schur-geometrically concavity of Gini means, Comput. Math. Appl., Volume 57 (2009), pp. 266-274

[26] Stolarsky, K. B. Hölder means, Lehmer means, and \(x^{-1} \log \cosh x\) , J. Math. Anal. Appl., Volume 202 (1996), pp. 810-818

[27] B.-Y. Wang Foundations of Majorization Inequalities, (in Chinese) Beijing Normal Univ. Press, Beijing, China, 1990

[28] Wang, M. K.; Chu, Y.-M.; Wang, G.-D. A sharp double inequality between the Lehmer and arithmetic-geometric means, Pac. J. Appl. Math., Volume 4 (2012), pp. 1-25

[29] Wang, M.-K.; Qiu, Y.-F.; Y.-M. Chu Sharp bounds for seiffert means in terms of Lehmer means, J. Math. Inequal., Volume 4 (2010), pp. 581-586

[30] S. R. Wassell Rediscovering a family of means, Math. Intelligencer, Volume 24 (2002), pp. 58-65

[31] A. Witkowski Convexity of weighted Stolarsky means, JIPAM. J. Inequal. Pure Appl. Math., Volume 7 (2006), pp. 1-6

[32] A. Witkowski On Schur-convexity and Schur-geometric convexity of four-parameter family of means, Math. Inequal. Appl., Volume 14 (2011), pp. 897-903

[33] Wu, Y.; F. Qi Schur-harmonic convexity for differences of some means, Analysis (Munich), Volume 32 (2012), pp. 263-270

[34] Wu, Y.; Qi, F.; Shi, H.-N. Schur-harmonic convexity for differences of some special means in two variables, J. Math. Inequal., Volume 8 (2014), pp. 321-330

[35] Xia, W.-F.; Y.-M. Chu The Schur convexity of the weighted generalized logarithmic mean values according to harmonic mean, Int. J. Mod. Math., Volume 4 (2009), pp. 225-233

[36] Xia, W.-F.; Chu, Y.-M. The Schur harmonic convexity of Lehmer means, Int. Math. Forum, Volume 4 (2009), pp. 2009-2015

[37] Xia, W.-F.; Chu, Y.-M. The Schur multiplicative convexity of the generalized Muirhead mean values, Int. J. Funct. Anal. Oper. Theory Appl., Volume 1 (2009), pp. 1-8

[38] Xia, W.-F.; Chu, Y.-M. The Schur convexity of Gini mean values in the sense of harmonic mean, Acta Math. Sci. Ser. B Engl. Ed., Volume 31 (2011), pp. 1103-1112

[39] Xia, W.-F.; Chu, Y.-M.; G.-D. Wang Necessary and sufficient conditions for the Schur harmonic convexity or concavity of the extended mean values, Rev. Un. Mat. Argentina, Volume 51 (2010), pp. 121-132

[40] Yang, Z.-H. Necessary and sufficient conditions for Schur geometrical convexity of the four-parameter homogeneous means, Abstr. Appl. Anal., Volume 2010 (2010), pp. 1-16

[41] Z.-H. Yang Schur harmonic convexity of Gini means, Int. Math. Forum, Volume 6 (2011), pp. 747-762

[42] Yang, Z.-H. Schur power convexity of Stolarsky means, Publ. Math. Debrecen, Volume 80 (2012), pp. 43-66

[43] Yin, H.-P.; Shi, H.-N.; F. Qi On Schur m-power convexity for ratios of some means, J. Math. Inequal., Volume 9 (2015), pp. 145-153

[44] X.-M. Zhang Geometrically convex functions, (Chinese) Anhui University Press, Hefei, 2004

[45] Zhang, T.-Y.; A.-P. Ji Schur-Convexity of Generalized Heronian Mean, International Conference on Information Computing and Applications, Springer, Berlin, Heidelberg, Volume 244 (2011), pp. 25-33

Cité par Sources :