On the well-posedness of the generalized split quasi-inverse variational inequalities
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 10, p. 5497-5509.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, a generalized split quasi-inverse variational inequality ((GSQIVI), for short) is considered and investigated in Hilbert spaces. Since the well-posedness results, not only show us the qualitative properties of problem (GSQIVI), but also it gives us an outlook to the convergence analysis of the solutions for (GSQIVI). Therefore, we first introduce the concepts concerning with the approximating sequences, well-posedness and well-posedness in the generalized sense of (GSQIVI). Then, under those definitions, we establish several metric characterizations and equivalent conditions of well-posedness for the (GSQIVI) by using the measure of noncompactness theory and the generalized Cantor theorem.
DOI : 10.22436/jnsa.009.10.01
Classification : 49K40, 49J40, 90C33, 90C46, 49J53
Keywords: Generalized split quasi-inverse variational inequality, measure of noncompactness, well-posedness, Painlevé-Kuratowski limits.

Cao, Liang 1 ; Kong, Hua 2 ; Zeng, Sheng-Da 3

1 Guangxi University of Finance and Economics, Nanning, Guangxi 530003, P. R. China
2 Data Recovery Key Laboratory of Sichuan Province, College of Mathematics and Information Science, Neijiang Normal University, Neijiang 641100, P. R. China
3 Data Recovery Key Laboratory of Sichuan Province, College of Mathematics and Information Science, Neijiang Normal University, Neijiang 641100, P. R. China;Institute of Computer Science, Faculty of Mathematics and Computer Science, Jagiellonian University, ul. Lojasiewicza 6, 30-348 Krakow, Poland
@article{JNSA_2016_9_10_a0,
     author = {Cao, Liang and Kong, Hua and Zeng, Sheng-Da},
     title = {On the well-posedness of the generalized split quasi-inverse variational inequalities},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5497-5509},
     publisher = {mathdoc},
     volume = {9},
     number = {10},
     year = {2016},
     doi = {10.22436/jnsa.009.10.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.01/}
}
TY  - JOUR
AU  - Cao, Liang
AU  - Kong, Hua
AU  - Zeng, Sheng-Da
TI  - On the well-posedness of the generalized split quasi-inverse variational inequalities
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5497
EP  - 5509
VL  - 9
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.01/
DO  - 10.22436/jnsa.009.10.01
LA  - en
ID  - JNSA_2016_9_10_a0
ER  - 
%0 Journal Article
%A Cao, Liang
%A Kong, Hua
%A Zeng, Sheng-Da
%T On the well-posedness of the generalized split quasi-inverse variational inequalities
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5497-5509
%V 9
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.01/
%R 10.22436/jnsa.009.10.01
%G en
%F JNSA_2016_9_10_a0
Cao, Liang; Kong, Hua; Zeng, Sheng-Da. On the well-posedness of the generalized split quasi-inverse variational inequalities. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 10, p. 5497-5509. doi : 10.22436/jnsa.009.10.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.01/

[1] Blum, E.; Oettli, W. From optimization and variational inequalities to equilibrium problems, Math. Student, Volume 63 (1994), pp. 123-145

[2] Ceng, L. C.; Yao, J. C. Well-posedness of generalized mixed variational inequalities, inclusion problems and fixed- point problems, Nonlinear Anal., Volume 69 (2008), pp. 4585-4603

[3] Fan, K. Some properties of convex sets related to fixed point theorems, Math. Ann., Volume 266 (1984), pp. 519-537

[4] Fang, Y.-P.; Huang, N.-J. Variational-like inequalities with generalized monotone mappings in Banach spaces, J. Optim. Theory Appl., Volume 118 (2003), pp. 327-338

[5] Glowinski, R.; Lions, J. L.; Trémoliéres, R. Numerical analysis of variational inequalities, Translated from the French, Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam-New York, 1981

[6] Guu, S. M.; Li, J. Vector variational-like inequalities with generalized bifunctions defined on nonconvex sets, Nonlinear Anal., Volume 71 (2009), pp. 2847-2855

[7] He, B. S.; He, X.-Z.; Liu, H. X. Solving a class of constrained 'black-box' inverse variational inequalities, European J. Oper. Res., Volume 204 (2010), pp. 391-401

[8] He, B. S.; Liu, H. X. Inverse variational inequalities in economics-applications and algorithms, Sciencepaper Online, , 2006

[9] He, B. S.; Liu, H. X.; Li, M.; He, X.-Z. PPA-based methods for monotone inverse variational inequalities, Sciencepaper Online, , 2006

[10] Hu, R.; Fang, Y.-P. Well-posedness of inverse variational inequalities, J. Convex Anal., Volume 15 (2008), pp. 427-437

[11] Hu, R.; Fang, Y.-P. Levitin-Polyak well-posedness by perturbations of inverse variational inequalities, Optim. Lett., Volume 7 (2013), pp. 343-359

[12] Hu, R.; Fang, Y.-P. Well-posedness of the split inverse variational inequality problem, Bull. Malays. Math. Sci. Soc., Volume 2015 (2015), pp. 1-12

[13] Huang, L. L. Matrix Lagrange multipliers, J. Comput. Complex. Appl., Volume 2 (2016), pp. 86-88

[14] Huang, N.-J.; Li, J.; Thompson, B. H. Stability for parametric implicit vector equilibrium problems, Math. Comput. Modelling, Volume 43 (2006), pp. 1267-1274

[15] Kimura, K.; Liou, Y.-C.; Wu, S.-Y.; Yao, J.-C. Well-posedness for parametric vector equilibrium problems with applications, J. Ind. Manag. Optim., Volume 4 (2008), pp. 313-327

[16] Kuratowski, K. Topology, Vol. I, New edition, revised and augmented, Translated from the French by J. Jaworowski, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe, Warsaw, 1966

[17] Lemaire, B. Well-posedness, conditioning and regularization of minimization, inclusion and fixed-point problems, Proceedings of the 4th International Conference on Mathematical Methods in Operations Research and 6th Workshop onWell-posedness and Stability of Optimization Problems, Sozopol, (1997), Pliska Stud. Math. Bulgar., Volume 12 (1998), pp. 71-84

[18] Li, X.; Li, X.-S.; Huang, N.-J. A generalized f-projection algorithm for inverse mixed variational inequalities, Optim. Lett., Volume 8 (2014), pp. 1063-1076

[19] Long, X.-J.; Huang, N.-J. Metric characterizations of \(\alpha\)-well-posedness for symmetric quasi-equilibrium problems, J. Global Optim., Volume 45 (2009), pp. 459-471

[20] Mahato, N. K.; Nahak, C. Weakly relaxed \(\alpha\)-pseudomonotonicity and equilibrium problem in Banach spaces, J. Appl. Math. Comput., Volume 40 (2012), pp. 499-509

[21] Noor, M. A.; Noor, K. I.; Gupta, V. On equilibrium-like problems, Appl. Anal., Volume 86 (2007), pp. 807-818

[22] Noor, M. A.; Noor, K. I.; Zainab, S. On a predictor-corrector method for solving invex equilibrium problems, Nonlinear Anal., Volume 71 (2009), pp. 3333-3338

[23] Scrimali, L. An inverse variational inequality approach to the evolutionary spatial price equilibrium problem, Optim. Eng., Volume 13 (2012), pp. 375-387

[24] Tykhonov, A. N. On the stability of the functional optimization problem, USSR J. Comput. Math. Math. Phys., Volume 6 (1966), pp. 631-634

[25] Wu, G. C. New correction functional and Lagrange multipliers for two point value problems, J. Comput. Complex. Appl., Volume 2 (2016), pp. 46-48

[26] Yang, J. F. Dynamic power price problem: an inverse variational inequality approach, J. Ind. Manag. Optim., Volume 4 (2008), pp. 673-684

Cité par Sources :