Voir la notice de l'article provenant de la source International Scientific Research Publications
Cao, Liang 1 ; Kong, Hua 2 ; Zeng, Sheng-Da 3
@article{JNSA_2016_9_10_a0, author = {Cao, Liang and Kong, Hua and Zeng, Sheng-Da}, title = {On the well-posedness of the generalized split quasi-inverse variational inequalities}, journal = {Journal of nonlinear sciences and its applications}, pages = {5497-5509}, publisher = {mathdoc}, volume = {9}, number = {10}, year = {2016}, doi = {10.22436/jnsa.009.10.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.01/} }
TY - JOUR AU - Cao, Liang AU - Kong, Hua AU - Zeng, Sheng-Da TI - On the well-posedness of the generalized split quasi-inverse variational inequalities JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 5497 EP - 5509 VL - 9 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.01/ DO - 10.22436/jnsa.009.10.01 LA - en ID - JNSA_2016_9_10_a0 ER -
%0 Journal Article %A Cao, Liang %A Kong, Hua %A Zeng, Sheng-Da %T On the well-posedness of the generalized split quasi-inverse variational inequalities %J Journal of nonlinear sciences and its applications %D 2016 %P 5497-5509 %V 9 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.01/ %R 10.22436/jnsa.009.10.01 %G en %F JNSA_2016_9_10_a0
Cao, Liang; Kong, Hua; Zeng, Sheng-Da. On the well-posedness of the generalized split quasi-inverse variational inequalities. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 10, p. 5497-5509. doi : 10.22436/jnsa.009.10.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.01/
[1] From optimization and variational inequalities to equilibrium problems, Math. Student, Volume 63 (1994), pp. 123-145
[2] Well-posedness of generalized mixed variational inequalities, inclusion problems and fixed- point problems, Nonlinear Anal., Volume 69 (2008), pp. 4585-4603
[3] Some properties of convex sets related to fixed point theorems, Math. Ann., Volume 266 (1984), pp. 519-537
[4] Variational-like inequalities with generalized monotone mappings in Banach spaces, J. Optim. Theory Appl., Volume 118 (2003), pp. 327-338
[5] Numerical analysis of variational inequalities, Translated from the French, Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam-New York, 1981
[6] Vector variational-like inequalities with generalized bifunctions defined on nonconvex sets, Nonlinear Anal., Volume 71 (2009), pp. 2847-2855
[7] Solving a class of constrained 'black-box' inverse variational inequalities, European J. Oper. Res., Volume 204 (2010), pp. 391-401
[8] Inverse variational inequalities in economics-applications and algorithms, Sciencepaper Online, , 2006
[9] PPA-based methods for monotone inverse variational inequalities, Sciencepaper Online, , 2006
[10] Well-posedness of inverse variational inequalities, J. Convex Anal., Volume 15 (2008), pp. 427-437
[11] Levitin-Polyak well-posedness by perturbations of inverse variational inequalities, Optim. Lett., Volume 7 (2013), pp. 343-359
[12] Well-posedness of the split inverse variational inequality problem, Bull. Malays. Math. Sci. Soc., Volume 2015 (2015), pp. 1-12
[13] Matrix Lagrange multipliers, J. Comput. Complex. Appl., Volume 2 (2016), pp. 86-88
[14] Stability for parametric implicit vector equilibrium problems, Math. Comput. Modelling, Volume 43 (2006), pp. 1267-1274
[15] Well-posedness for parametric vector equilibrium problems with applications, J. Ind. Manag. Optim., Volume 4 (2008), pp. 313-327
[16] Topology, Vol. I, New edition, revised and augmented, Translated from the French by J. Jaworowski, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe, Warsaw, 1966
[17] Well-posedness, conditioning and regularization of minimization, inclusion and fixed-point problems, Proceedings of the 4th International Conference on Mathematical Methods in Operations Research and 6th Workshop onWell-posedness and Stability of Optimization Problems, Sozopol, (1997), Pliska Stud. Math. Bulgar., Volume 12 (1998), pp. 71-84
[18] A generalized f-projection algorithm for inverse mixed variational inequalities, Optim. Lett., Volume 8 (2014), pp. 1063-1076
[19] Metric characterizations of \(\alpha\)-well-posedness for symmetric quasi-equilibrium problems, J. Global Optim., Volume 45 (2009), pp. 459-471
[20] Weakly relaxed \(\alpha\)-pseudomonotonicity and equilibrium problem in Banach spaces, J. Appl. Math. Comput., Volume 40 (2012), pp. 499-509
[21] On equilibrium-like problems, Appl. Anal., Volume 86 (2007), pp. 807-818
[22] On a predictor-corrector method for solving invex equilibrium problems, Nonlinear Anal., Volume 71 (2009), pp. 3333-3338
[23] An inverse variational inequality approach to the evolutionary spatial price equilibrium problem, Optim. Eng., Volume 13 (2012), pp. 375-387
[24] On the stability of the functional optimization problem, USSR J. Comput. Math. Math. Phys., Volume 6 (1966), pp. 631-634
[25] New correction functional and Lagrange multipliers for two point value problems, J. Comput. Complex. Appl., Volume 2 (2016), pp. 46-48
[26] Dynamic power price problem: an inverse variational inequality approach, J. Ind. Manag. Optim., Volume 4 (2008), pp. 673-684
Cité par Sources :