On the intuitionistic fuzzy metric spaces and the intuitionistic fuzzy normed spaces
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 9, p. 5441-5448.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The purpose of this article is to evaluate the definition of a class of intuitionistic fuzzy metric space which was presented by Park [J. H. Park, Chaos Solitons Fractals, 22 (2004), 1039-1046]. This review is also appropriate to the definition of a class of intuitionistic fuzzy normed space which was presented by Saadati and Park [R. Saadati, J. H. Park, Chaos Solitons Fractals, 27 (2006), 331-344].
DOI : 10.22436/jnsa.009.09.12
Classification : 54B20, 54E35
Keywords: Fuzzy metric space, fuzzy normed space, intuitionistic fuzzy metric space, intuitionistic fuzzy normed space.

Li, Xia 1 ; Guo, Meifang 1 ; Su, Yongfu 2

1 Department of Mathematics and Sciences, Hebei GEO University, Shijiazhuang 050031, China
2 Department of Mathematics, Tianjin Polytechnic University, 300387, China
@article{JNSA_2016_9_9_a11,
     author = {Li, Xia and Guo, Meifang and Su, Yongfu},
     title = {On the intuitionistic fuzzy metric spaces and the intuitionistic  fuzzy normed spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5441-5448},
     publisher = {mathdoc},
     volume = {9},
     number = {9},
     year = {2016},
     doi = {10.22436/jnsa.009.09.12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.12/}
}
TY  - JOUR
AU  - Li, Xia
AU  - Guo, Meifang
AU  - Su, Yongfu
TI  - On the intuitionistic fuzzy metric spaces and the intuitionistic  fuzzy normed spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5441
EP  - 5448
VL  - 9
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.12/
DO  - 10.22436/jnsa.009.09.12
LA  - en
ID  - JNSA_2016_9_9_a11
ER  - 
%0 Journal Article
%A Li, Xia
%A Guo, Meifang
%A Su, Yongfu
%T On the intuitionistic fuzzy metric spaces and the intuitionistic  fuzzy normed spaces
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5441-5448
%V 9
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.12/
%R 10.22436/jnsa.009.09.12
%G en
%F JNSA_2016_9_9_a11
Li, Xia; Guo, Meifang; Su, Yongfu. On the intuitionistic fuzzy metric spaces and the intuitionistic  fuzzy normed spaces. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 9, p. 5441-5448. doi : 10.22436/jnsa.009.09.12. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.12/

[1] Abbas, M.; Ali, B.; Sintunavarat, W.; Kumam, P. Tripled fixed point and tripled coincidence point theorems in intuitionistic fuzzy normed spaces, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-16

[2] Alaca, C.; Turkoghlu, D.; Yildiz, C.; ; Fractals, Chaos Solitons Fixed points in intuitionistic fuzzy metric spaces, Chaos Solitons Fractals, Volume 29 (2006), pp. 1073-1078

[3] Atanassov, K. T. Intuitionistic fuzzy sets, Fuzzy Sets and Systems, Volume 20 (1986), pp. 87-96

[4] Chauhan, S.; Bhatnagar, S.; Radenović, S. Common fixed point theorems for weakly compatible mappings in fuzzy metric spaces, Matematiche (Catania), Volume 68 (2013), pp. 87-98

[5] Chauhan, S.; Radenović, S.; Imdad, M.; Vetro, C. Some integral type fixed point theorems in Non-Archimedean Menger PM-Spaces with common property (E.A) and application of functional equations in dynamic programming, Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Math. RACSAM, Volume 108 (2014), pp. 795-810

[6] Cho, Y. J.; Martínez-Moreno, J.; Roldán, A.; Roldán, C. Coupled coincidence point theorems in (intuitionistic) fuzzy normed spaces, J. Inequal. Appl., Volume 2013 (2013), pp. 1-11

[7] D. Çoker An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, Volume 88 (1997), pp. 81-89

[8] Bari, C. Di; Vetro, C. Fixed points, attractors and weak fuzzy contractive mappings in a fuzzy metric space, J. Fuzzy Math., Volume 13 (2005), pp. 973-982

[9] Efe, H.; Yiğitb, E. On strong intuitionistic fuzzy metrics, J. Nonlinear Sci. Appl., Volume 9 (2016), pp. 4016-4038

[10] George, A.; Veeramani, P. On some results in fuzzy metric spaces, Fuzzy Sets and Systems, Volume 64 (1994), pp. 395-399

[11] Gopal, D.; Imdad, M.; Vetro, C.; Hasan, M. Fixed point theory for cyclic weak ϕ-contraction in fuzzy metric spaces, J. Nonlinear Anal. Appl., Volume 2012 (2012), pp. 1-11

[12] Grabiec, M. Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, Volume 27 (1988), pp. 385-389

[13] Ionescu, C.; Rezapour, S.; Samei, M. E. Fixed points of some new contractions on intuitionistic fuzzy metric spaces, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-8

[14] Jiang, Z.; Wang, Y. J.; Zhu, C.-C. Fixed point theorems for contractions in fuzzy normed spaces and intuitionistic fuzzy normed spaces , Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-10

[15] Kadelburg, Z.; Radenović, S. A note on some recent best proximity point results for non-self mappings , Gulf J. Math., Volume 1 (2013), pp. 36-41

[16] Kramosil, I.; Michálek, J. Fuzzy metrics and statistical metric spaces, Kybernetika (Prague), Volume 11 (1975), pp. 336-344

[17] Latif, A.; Hezarjaribi, M.; Salimi, P.; Hussain, N. Best proximity point theorems for \(\alpha-\psi\)-proximal contractions in intuitionistic fuzzy metric spaces, J. Inequal. Appl., Volume 2014 (2014), pp. 1-19

[18] Long, W.; Khaleghizadeh, S.; Selimi, P.; Radenović, S.; Shukla, S. Some new fixed point results in partial ordered metric spaces via admissible mappings, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-18

[19] A. Mohamad Fixed-point theorems in intuitionistic fuzzy metric spaces, Chaos Solitons Fractals, Volume 34 (2007), pp. 1689-1695

[20] Mohiuddine, S. A.; Alghamdi, M. A. Stability of functional equation obtained through a fixed-point alternative in intuitionistic fuzzy normed spaces, Adv. Difference Equ., Volume 2012 (2012), pp. 1-16

[21] Park, J. H. Intuitionistic fuzzy metric spaces, Chaos Solitons Fractals, Volume 22 (2004), pp. 1039-1046

[22] Park, J. S.; Kwun, Y. C.; Park, J. H. A fixed point theorem in the intuitionistic fuzzy metric spaces , Far East J. Math. Sci. (FJMS), Volume 16 (2005), pp. 137-149

[23] Rafi, M.; Noorani, M. S. M. Fixed point theorem on intuitionistic fuzzy metric, Iran. J. Fuzzy Syst., Volume 3 (2006), pp. 23-29

[24] Saadati, R.; Kumam, P.; S. Y. Jang On the tripled fixed point and tripled coincidence point theorems in fuzzy normed spaces, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-16

[25] Saadati, R.; Park, J. H. On the intuitionistic fuzzy topological spaces , Chaos Solitons Fractals, Volume 27 (2006), pp. 331-344

[26] Salimi, P.; Vetro, C.; P. Vetro Some new fixed point results in non-Archimedean fuzzy metric spaces, Nonlinear Anal. Model. Control, Volume 18 (2013), pp. 344-358

[27] Schweizer, B.; Sklar, A. Statistical metric spaces, Pacific J. Math., Volume 10 (1960), pp. 314-334

[28] Shen, Y. H.; Qiu, D.; Chen, W. Fixed point theorems in fuzzy metric spaces, Appl. Math. Lett., Volume 25 (2012), pp. 138-141

[29] Sintunavarat, W.; Cho, Y. J.; Kumam, P. Coupled coincidence point theorems for contractions without commutative condition in intuitionistic fuzzy normed spaces, Fixed Point Theory Appl., Volume 2011 (2011), pp. 1-13

[30] Vetro, C. Fixed points in weak non-Archimedean fuzzy metric spaces, Fuzzy Sets and Systems, Volume 162 (2011), pp. 84-90

[31] Vetro, C.; Gopal, D.; Imdad, M. Common fixed point theorems for (\(\varphi,\psi\))-weak contractions in fuzzy metric spaces, Indian J. Math., Volume 52 (2010), pp. 573-590

[32] Vetro, C.; Vetro, P. Common fixed points for discontinuous mappings in fuzzy metric spaces, Rend. Circ. Mat. Palermo, Volume 57 (2008), pp. 295-303

[33] Zadeh, L. A. Fuzzy sets, Information and Control, Volume 8 (1965), pp. 338-353

Cité par Sources :