Youngs inequality for multivariate functions :
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 9, p. 5403-5409 Cet article a éte moissonné depuis la source International Scientific Research Publications

Voir la notice de l'article

This paper presents a generalization of Young's inequality to the real functions of several variables. Moreover, the relevant facts about Young's inequality and its extension including improved proofs are provided in a review. The basic results are initiated by applying the integral method to a strictly increasing continuous function of one variable.

DOI : 10.22436/jnsa.009.09.09
Classification : 26B20, 26D15
Keywords: Strictly increasing function, integral sum, Young's inequality

Pavić, Zlatko 1

1 Mechanical Engineering Faculty in Slavonski Brod, University of Osijek, Slavonski Brod, 35000, China
@article{10_22436_jnsa_009_09_09,
     author = {Pavi\'c, Zlatko},
     title = {Youngs inequality for multivariate functions},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5403-5409},
     year = {2016},
     volume = {9},
     number = {9},
     doi = {10.22436/jnsa.009.09.09},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.09/}
}
TY  - JOUR
AU  - Pavić, Zlatko
TI  - Youngs inequality for multivariate functions
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5403
EP  - 5409
VL  - 9
IS  - 9
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.09/
DO  - 10.22436/jnsa.009.09.09
LA  - en
ID  - 10_22436_jnsa_009_09_09
ER  - 
%0 Journal Article
%A Pavić, Zlatko
%T Youngs inequality for multivariate functions
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5403-5409
%V 9
%N 9
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.09/
%R 10.22436/jnsa.009.09.09
%G en
%F 10_22436_jnsa_009_09_09
Pavić, Zlatko. Youngs inequality for multivariate functions. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 9, p. 5403-5409. doi: 10.22436/jnsa.009.09.09

[1] Bullen, P. S. The inequality of Young, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., Volume 357--380 (1970), pp. 51-54

[2] Cerone, P. On Young's inequality and its reverse for bounding the Lorenz curve and Gini mean, J. Math. Inequal., Volume 3 (2009), pp. 369-381

[3] Cunningham, Jr. F.; Grossman, N. On Young's inequality, Amer. Math. Monthly, Volume 78 (1971), pp. 781-783

[4] Diaz, J. B.; Metcalf, F. T. An analytic proof of Young's inequality, Amer. Math. Monthly, Volume 77 (1970), pp. 603-609

[5] Merkle, M. J. A contribution to Young's inequality, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., Volume 461--497 (1974), pp. 265-267

[6] Mitroi, F.-C.; Niculescu, C. P. An extension of Young's inequality, Abstr. Appl. Anal., Volume 2011 (2011), pp. 1-18

[7] Niculescu, C. P.; Persson, L.-E. Convex functions and their applications, A contemporary approach, CMS Books in Mathematics/Ouvrages de Mathmatiques de la SMC, Springer, New York, 2006

[8] Nieto, J. I. Una demonstración sencilla y elemental de la desigualdad de Young, Rev. Colombiana Estadíst., Volume 8 (1974), pp. 177-182

[9] Páles, Z. On Young-type inequalities, Acta Sci. Math. (Szeged), Volume 54 (1990), pp. 327-338

[10] Pavić, Z. Presentation of Young's inequality, J. Inequal. Spec. Funct., Volume 6 (2015), pp. 17-26

[11] Pečarić, J. E.; Proschan, F.; Tong, Y. L. Convex functions, partial orderings, and statistical applications, Mathematics in Science and Engineering, Academic Press, Boston, 1992

[12] Sababheh, M.; Choi, D. A complete refinement of Young's inequality, J. Math. Anal. Appl., Volume 440 (2016), pp. 379-393

[13] Witkowski, A. On Young's inequality, JIPAM. J. Inequal. Pure Appl. Math., Volume 2006 (2006), pp. 1-3

[14] Young, W. H. On class of summable functions and there Fourier series, Proc. Roy. Soc. London A, Volume 87 (1912), pp. 225-229

Cité par Sources :