Epinormality
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 9, p. 5398-5402.

Voir la notice de l'article provenant de la source International Scientific Research Publications

A topological space $(X ; {\tau} )$ is called epinormal if there is a coarser topology $\acute{\tau}$ on $X$ such that $(X ; \acute{\tau} )$ is $T_4$. We investigate this property and present some examples to illustrate the relationships between epinormality and other weaker kinds of normality.
DOI : 10.22436/jnsa.009.09.08
Classification : 54B10, 54D15
Keywords: Normal, epinormal, mildly normal, C-normal, L-normal, submetrizable, regularly closed.

AlZahrani, Samirah 1 ; Kalantan, Lutfi 2

1 Department of Mathematics, Taif University, P. O. Box 888, Taif 21974, Saudi Arabia
2 Department of Mathematics, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
@article{JNSA_2016_9_9_a7,
     author = {AlZahrani, Samirah and Kalantan, Lutfi},
     title = {Epinormality},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5398-5402},
     publisher = {mathdoc},
     volume = {9},
     number = {9},
     year = {2016},
     doi = {10.22436/jnsa.009.09.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.08/}
}
TY  - JOUR
AU  - AlZahrani, Samirah
AU  - Kalantan, Lutfi
TI  - Epinormality
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5398
EP  - 5402
VL  - 9
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.08/
DO  - 10.22436/jnsa.009.09.08
LA  - en
ID  - JNSA_2016_9_9_a7
ER  - 
%0 Journal Article
%A AlZahrani, Samirah
%A Kalantan, Lutfi
%T Epinormality
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5398-5402
%V 9
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.08/
%R 10.22436/jnsa.009.09.08
%G en
%F JNSA_2016_9_9_a7
AlZahrani, Samirah; Kalantan, Lutfi. Epinormality. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 9, p. 5398-5402. doi : 10.22436/jnsa.009.09.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.08/

[1] Alexandrov, P. S.; Urysohn, P. S. Mémoire sur les espaces topologiques compacts, Verh. Konink. Akad. Wetensch., Volume 14 (1929), pp. 1-96

[2] Almontashery, K.; Kalantan, L. N. Results about the Alexandroff duplicate space, Appl. Gen. Topol., Volume 17 (2016), pp. 117-122

[3] Engelking, R. On the double circumference of Alexandroff, Bull Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., Volume 16 (1968), pp. 629-634

[4] Engelking, R. General topology, Translated from the Polish by the author, Monografie Matematyczne, Tom 60, [Mathematical Monographs, 60], PWN|Polish Scientific Publishers, Warsaw, 1977

[5] Gruenhage, G. Generalized metric spaces, Handbook of set-theoretic topology, North-Holland, Amsterdam, Volume 1984 (1984), pp. 428-434

[6] Kalantan, L. N. \(\pi\)-normal topological spaces, Filomat, Volume 22 (2008), pp. 173-181

[7] Kalantan, L. N. C-normal topological spaces, accepted in Filomat (2016)

[8] Kalantan, L. N.; Allahabi, F. On almost normality, Demonstratio Math., Volume 4 (2008), pp. 961-968

[9] Kalantan, L. N.; Saeed, M. M. L-normality, Topology Proc., Volume 50 (2017), pp. 141-149

[10] Singal, M. K.; Singal, A. R. Mildly normal spaces, Kyungpook Math. J., Volume 13 (1973), pp. 27-31

[11] Stchepin, E. V. Real-valued functions, and spaces close to normal, Sib. Math. J., Volume 13 (1972), pp. 1182-1196

[12] Steen, L. A.; Seebach, Jr. J. A. Counterexamples in topology, Reprint of the second (1978) edition, Dover Publications, Inc., Mineola, NY, 1995

[13] Stephenson, Jr. R. M. Pseudocompact spaces, Trans. Amer. Math. Soc., Volume 134 (1968), pp. 437-448

[14] Douwen, E. K. Van The integers and topology, Handbook of set-theoretic topology, North-Holland, Amsterdam, Volume 1984 (1984), pp. 111-167

[15] Zaitsev, V. On certain classes of topological spaces and their bicompactifications, Dokl. Akad. Nauk SSSR, Volume 178 (1968), pp. 778-779

Cité par Sources :