Voir la notice de l'article provenant de la source International Scientific Research Publications
Ji, Pengpeng 1 ; Shen, Chun 1
@article{JNSA_2016_9_9_a6, author = {Ji, Pengpeng and Shen, Chun}, title = {The {Perturbed} {Riemann} {Problem} for the {Chromatography} {System} of {Langmuir} {Isotherm} with one {Inert} {Component}}, journal = {Journal of nonlinear sciences and its applications}, pages = {5382-5397}, publisher = {mathdoc}, volume = {9}, number = {9}, year = {2016}, doi = {10.22436/jnsa.009.09.07}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.07/} }
TY - JOUR AU - Ji, Pengpeng AU - Shen, Chun TI - The Perturbed Riemann Problem for the Chromatography System of Langmuir Isotherm with one Inert Component JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 5382 EP - 5397 VL - 9 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.07/ DO - 10.22436/jnsa.009.09.07 LA - en ID - JNSA_2016_9_9_a6 ER -
%0 Journal Article %A Ji, Pengpeng %A Shen, Chun %T The Perturbed Riemann Problem for the Chromatography System of Langmuir Isotherm with one Inert Component %J Journal of nonlinear sciences and its applications %D 2016 %P 5382-5397 %V 9 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.07/ %R 10.22436/jnsa.009.09.07 %G en %F JNSA_2016_9_9_a6
Ji, Pengpeng; Shen, Chun. The Perturbed Riemann Problem for the Chromatography System of Langmuir Isotherm with one Inert Component. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 9, p. 5382-5397. doi : 10.22436/jnsa.009.09.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.07/
[1] Some new well-posedness results for continuity and transport equations, and applications to the chromatography system, SIAM J. Math. Anal., Volume 41 (2009), pp. 1890-1920
[2] Linear discrete systems with memory: a generalization of the Langmuir model, Open Phys., Volume 11 (2013), pp. 1233-1237
[3] New approach for consideration of adsorption/desorption data, Commun. Nonlinear Sci. Numer. Simul., Volume 16 (2011), pp. 4643-4648
[4] Parameter identification of the Langmuir model for adsorption and desorption kinetic data,, Nonlinear Complex Dyn., Springer, New York, Volume 2011 (2011), pp. 97-106
[5] Some mathematical results on a system of transport equations with an algebraic constraint describing fixed-bed adsorption of gases, J. Math. Anal. Appl., Volume 313 (2006), pp. 551-571
[6] Hyperbolic systems of conservation laws, The one-dimensional Cauchy problem, Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2000
[7] The Riemann problem and interaction of waves in gas dynamics, Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989
[8] Delta shock waves in chromatography equations, J. Math. Anal. Appl., Volume 380 (2011), pp. 475-485
[9] Hyperbolic conservation laws in continuum physics, Third edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 2010
[10] The perturbed Riemann problem and delta contact discontinuity in chromatography equations , Nonlinear Anal., Volume 106 (2014), pp. 110-123
[11] Absence of experimental evidence of a delta-shock in the system phenetole and 4-tert-butylphenol on Zorbax 300SB-C18 , J. Chromatogr. A, Volume 1425 (2015), pp. 116-128
[12] The constitution and fundamental properties of solids and liquids, J. Amer. Chem. Soc., Volume 38 (1916), pp. 2221-2295
[13] Nonclassical composition fronts in nonlinear chromatography: delta-shock, Ind. Eng. Chem. Res, Volume 48 (2009), pp. 7733-7752
[14] Experimental evidence of a delta-shock in nonlinear chromatography, J. Chromatogr. A, Volume 1217 (2010), pp. 2002-2012
[15] Asymptotic behavior of two interreacting chemicals in a chromatography reactor , SIAM J. Math. Anal., Volume 27 (1996), pp. 1559-1596
[16] First-order partial differential equations, Theory and application of hyperbolic systems of quasilinear equations, Dover Publications, Inc., Mineola, NY, 2001
[17] Systems of conservation laws, Cambridge University Press, Cambridge, 1999/2000
[18] Delta-shock waves in nonlinear chromatography, 13th International Conference on Hyperbolic Problems: Theory, Numerics, Applications, Beijing, 2010
[19] Wave interactions and stability of the Riemann solutions for the chromatography equations, J. Math. Anal. Appl., Volume 365 (2010), pp. 609-618
[20] The asymptotic behaviors of solutions to the perturbed Riemann problem near the singular curve for the chromatography system, J. Nonlinear Math. Phys., Volume 22 (2015), pp. 76-101
[21] Shock waves and reaction-diffusion equations, Second edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, New York, 1994
[22] Modeling of modifiersolute peak interactions in chromatography, AIChE J., Volume 52 (2006), pp. 565-573
[23] Delta shock waves for the chromatography equations as self-similar viscosity limits, Quart. Appl. Math., Volume 69 (2011), pp. 425-443
[24] Interactions of delta shock waves for the chromatography equations, Appl. Math. Lett., Volume 26 (2013), pp. 631-637
[25] Systems of conservation laws with invariant submanifolds, Trans. Amer. Math. Soc., Volume 280 (1983), pp. 781-795
[26] Singular shocks in a chromatography model, J. Math. Anal. Appl., Volume 439 (2016), pp. 766-797
[27] One-dimensional nonlinear chromatography system and delta-shock waves, Z. Angew. Math. Phys., Volume 64 (2013), pp. 1451-1469
Cité par Sources :