The Perturbed Riemann Problem for the Chromatography System of Langmuir Isotherm with one Inert Component
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 9, p. 5382-5397.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The solutions of the perturbed Riemann problem for the chromatography system of Langmuir isotherm with one inert component are constructed in completely explicit forms when the initial data are taken as three piecewise constant states. The wave interaction problem is investigated in detail by using the method of characteristics. In addition, the generalized Riemann problem with the delta-type initial data is considered and the delta contact discontinuity is discovered. Moreover, the strength of delta contact discontinuity decreases linearly at a constant rate and then the delta contact discontinuity degenerates to be the contact discontinuity when across the critical point.
DOI : 10.22436/jnsa.009.09.07
Classification : 35L67, 35L65, 76N15
Keywords: Chromatography system, Riemann problem, wave interaction, Temple class, hyperbolic conservation law.

Ji, Pengpeng 1 ; Shen, Chun 1

1 School of Mathematics and Statistics Science, Ludong University, Yantai, Shandong 264025, P. R. China
@article{JNSA_2016_9_9_a6,
     author = {Ji, Pengpeng and Shen, Chun},
     title = {The {Perturbed} {Riemann} {Problem} for the {Chromatography} {System} of {Langmuir} {Isotherm} with one {Inert} {Component}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5382-5397},
     publisher = {mathdoc},
     volume = {9},
     number = {9},
     year = {2016},
     doi = {10.22436/jnsa.009.09.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.07/}
}
TY  - JOUR
AU  - Ji, Pengpeng
AU  - Shen, Chun
TI  - The Perturbed Riemann Problem for the Chromatography System of Langmuir Isotherm with one Inert Component
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5382
EP  - 5397
VL  - 9
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.07/
DO  - 10.22436/jnsa.009.09.07
LA  - en
ID  - JNSA_2016_9_9_a6
ER  - 
%0 Journal Article
%A Ji, Pengpeng
%A Shen, Chun
%T The Perturbed Riemann Problem for the Chromatography System of Langmuir Isotherm with one Inert Component
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5382-5397
%V 9
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.07/
%R 10.22436/jnsa.009.09.07
%G en
%F JNSA_2016_9_9_a6
Ji, Pengpeng; Shen, Chun. The Perturbed Riemann Problem for the Chromatography System of Langmuir Isotherm with one Inert Component. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 9, p. 5382-5397. doi : 10.22436/jnsa.009.09.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.07/

[1] Ambrosio, L.; Crippa, G.; Figalli, A.; Spinolo, L. V. Some new well-posedness results for continuity and transport equations, and applications to the chromatography system, SIAM J. Math. Anal., Volume 41 (2009), pp. 1890-1920

[2] Baleanu, D.; Nigmatullin, R. R. Linear discrete systems with memory: a generalization of the Langmuir model, Open Phys., Volume 11 (2013), pp. 1233-1237

[3] Baleanu, M. C.; Nigmatullin, R. R.; Okur, S.; Ocakoglu, K. New approach for consideration of adsorption/desorption data, Commun. Nonlinear Sci. Numer. Simul., Volume 16 (2011), pp. 4643-4648

[4] Baleanu, D.; Okur, Y. Y.; Okur, S.; Ocakoglu, K. Parameter identification of the Langmuir model for adsorption and desorption kinetic data,, Nonlinear Complex Dyn., Springer, New York, Volume 2011 (2011), pp. 97-106

[5] Bourdarias, C.; Gisclon, M.; Junca, S. Some mathematical results on a system of transport equations with an algebraic constraint describing fixed-bed adsorption of gases, J. Math. Anal. Appl., Volume 313 (2006), pp. 551-571

[6] Bressan, A. Hyperbolic systems of conservation laws, The one-dimensional Cauchy problem, Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2000

[7] Chang, T.; L. Hsiao The Riemann problem and interaction of waves in gas dynamics, Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989

[8] Cheng, H. J.; Yang, H. C. Delta shock waves in chromatography equations, J. Math. Anal. Appl., Volume 380 (2011), pp. 475-485

[9] C. M. Dafermos Hyperbolic conservation laws in continuum physics, Third edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 2010

[10] Guo, L. H.; Pan, L. J.; Yin, G. The perturbed Riemann problem and delta contact discontinuity in chromatography equations , Nonlinear Anal., Volume 106 (2014), pp. 110-123

[11] Jermann, S.; Ortner, F.; Rajendran, A.; M. Mazzotti Absence of experimental evidence of a delta-shock in the system phenetole and 4-tert-butylphenol on Zorbax 300SB-C18 , J. Chromatogr. A, Volume 1425 (2015), pp. 116-128

[12] Langmuir, I. The constitution and fundamental properties of solids and liquids, J. Amer. Chem. Soc., Volume 38 (1916), pp. 2221-2295

[13] M. Mazzotti Nonclassical composition fronts in nonlinear chromatography: delta-shock, Ind. Eng. Chem. Res, Volume 48 (2009), pp. 7733-7752

[14] Mazzotti, M.; Tarafder, A.; Cornel, J.; Gritti, F.; Guiochon, G. Experimental evidence of a delta-shock in nonlinear chromatography, J. Chromatogr. A, Volume 1217 (2010), pp. 2002-2012

[15] Ostrov, D. N. Asymptotic behavior of two interreacting chemicals in a chromatography reactor , SIAM J. Math. Anal., Volume 27 (1996), pp. 1559-1596

[16] Rhee, H. K.; Aris, R.; N. R. Amundson First-order partial differential equations, Theory and application of hyperbolic systems of quasilinear equations, Dover Publications, Inc., Mineola, NY, 2001

[17] D. Serre Systems of conservation laws, Cambridge University Press, Cambridge, 1999/2000

[18] Shelkovich, V. M. Delta-shock waves in nonlinear chromatography, 13th International Conference on Hyperbolic Problems: Theory, Numerics, Applications, Beijing, 2010

[19] Shen, C. Wave interactions and stability of the Riemann solutions for the chromatography equations, J. Math. Anal. Appl., Volume 365 (2010), pp. 609-618

[20] Shen, C. The asymptotic behaviors of solutions to the perturbed Riemann problem near the singular curve for the chromatography system, J. Nonlinear Math. Phys., Volume 22 (2015), pp. 76-101

[21] J. Smoller Shock waves and reaction-diffusion equations, Second edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, New York, 1994

[22] Strohlein, G.; Morbidelli, M.; Rhee, H. K.; M. Mazzotti Modeling of modifiersolute peak interactions in chromatography, AIChE J., Volume 52 (2006), pp. 565-573

[23] Sun, M. Delta shock waves for the chromatography equations as self-similar viscosity limits, Quart. Appl. Math., Volume 69 (2011), pp. 425-443

[24] M. Sun Interactions of delta shock waves for the chromatography equations, Appl. Math. Lett., Volume 26 (2013), pp. 631-637

[25] Temple, B. Systems of conservation laws with invariant submanifolds, Trans. Amer. Math. Soc., Volume 280 (1983), pp. 781-795

[26] Tsikkou, C. Singular shocks in a chromatography model, J. Math. Anal. Appl., Volume 439 (2016), pp. 766-797

[27] Wang, G. D. One-dimensional nonlinear chromatography system and delta-shock waves, Z. Angew. Math. Phys., Volume 64 (2013), pp. 1451-1469

Cité par Sources :