Voir la notice de l'article provenant de la source International Scientific Research Publications
Aldhaifallah, M. 1 ; Tomar, M. 2 ; Nisar, K. S. 3 ; Purohit, S. D. 4
@article{JNSA_2016_9_9_a5, author = {Aldhaifallah, M. and Tomar, M. and Nisar, K. S. and Purohit, S. D.}, title = {Some new inequalities for (k,s)-fractional integrals}, journal = {Journal of nonlinear sciences and its applications}, pages = {5374-5381}, publisher = {mathdoc}, volume = {9}, number = {9}, year = {2016}, doi = {10.22436/jnsa.009.09.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.06/} }
TY - JOUR AU - Aldhaifallah, M. AU - Tomar, M. AU - Nisar, K. S. AU - Purohit, S. D. TI - Some new inequalities for (k,s)-fractional integrals JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 5374 EP - 5381 VL - 9 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.06/ DO - 10.22436/jnsa.009.09.06 LA - en ID - JNSA_2016_9_9_a5 ER -
%0 Journal Article %A Aldhaifallah, M. %A Tomar, M. %A Nisar, K. S. %A Purohit, S. D. %T Some new inequalities for (k,s)-fractional integrals %J Journal of nonlinear sciences and its applications %D 2016 %P 5374-5381 %V 9 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.06/ %R 10.22436/jnsa.009.09.06 %G en %F JNSA_2016_9_9_a5
Aldhaifallah, M.; Tomar, M.; Nisar, K. S.; Purohit, S. D. Some new inequalities for (k,s)-fractional integrals. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 9, p. 5374-5381. doi : 10.22436/jnsa.009.09.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.06/
[1] New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Thermal Sci., Volume 20 (2016), pp. 763-769
[2] Certain fractional integral formulas involving the product of generalized Bessel functions, Sci. World J., Volume 2013 (2013), pp. 1-9
[3] Generalized fractional integrals of product of two H-functions and a general class of polynomials, Int. J. Comput. Math., Volume 93 (2016), pp. 1320-1329
[4] Chebyshev type integral inequalities involving the fractional hypergeometric operators, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-10
[5] On fractional integral inequalities involving hypergeometric operators, Chin. J. Math. (N.Y.), Volume 2014 (2014), pp. 1-5
[6] A Grüss type integral inequality associated with gauss hypergeometric function fractional integral operator,, Commun. Korean Math. Soc., Volume 30 (2015), pp. 81-92
[7] New classes of integral inequalities of fractional order,, Matematiche (Catania), Volume 69 (2014), pp. 237-247
[8] New generalisations of Grüss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., Volume 2 (2010), pp. 93-99
[9] On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat., Volume 15 (2007), pp. 179-192
[10] Fractional calculus: integral and differential equations of fractional order, Fractals and fractional calculus in continuum mechanics, Udine, (1996), 223-276, CISM Courses and Lectures, Springer, Vienna, 1997
[11] Essai sur l'etude des fonctions, donnees par leur developpement de Taylor, J. Mat. Pure Appl. Ser. 4, Volume 8 (1892), pp. 101-186
[12] New approach to a generalized fractional integral, Appl. Math. Comput., Volume 218 (2011), pp. 860-865
[13] Mellin transforms of generalized fractional integrals and derivatives, Appl. Math. Comput., Volume 257 (2015), pp. 566-580
[14] Generalized Mittag-Leffler function and generalized fractional calculus operators, Integral Transforms Spec. Funct., Volume 15 (2004), pp. 31-49
[15] Generalized fractional calculus and applications, Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1994
[16] New inequalities of Ostrowski type for co-ordinated convex functions via fractional integrals, J. Fract. Calc. Appl., Volume 2 (2012), pp. 1-15
[17] Several interesting integral inequalities, J. Math. Inequal., Volume 10 (2009), pp. 201-212
[18] An introduction to the fractional calculus and fractional differential equations, A Wiley- Interscience Publication. John Wiley & Sons, Inc., New York, 1993
[19] Classical and new inequalities in analysis, Mathematics and its Applications (East European Series), Kluwer Academic Publishers Group, Dordrecht, 1993
[20] k-fractional integrals and application, Int. J. Contemp. Math. Sci., Volume 7 (2012), pp. 89-94
[21] Certain Chebyshev type integral inequalities involving Hadamard's fractional operators, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-7
[22] Solutions of fractional partial differential equations of quantum mechanics, Adva. Appl. Math. Mech., Volume 5 (2013), pp. 639-651
[23] On fractional partial differential equations related to quantum mechanics, J. Phys. A, Volume 44 (2011), pp. 1-8
[24] Certain inequalities related to the Chebyshevs functional involving Erdélyi-Kober operators, Scientia, Ser. A, Math. Sci., Volume 25 (2014), pp. 56-63
[25] Chebyshev type inequalities for the Saigo fractional integrals and their q-analogues, J. Math. Inequal., Volume 7 (2013), pp. 239-249
[26] Certain fractional integral inequalities involving the Gauss hypergeometric function, Rev. TéK. Ing. Univ. Zulia, Volume 37 (2014), pp. 167-175
[27] On fractional integral inequalities and their q-analogues, Revista Tecnocientifica URU, Volume 6 (2013), pp. 53-66
[28] (k; s)-Riemann-Liouville fractional integral and applications, Hacet. J. Math. Stat., Volume 45 (2016), pp. 77-89
[29] On generalized Grüss type inequalities for k-fractional integrals, Appl. Math. Comput., Volume 269 (2015), pp. 29-34
[30] Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput., Volume 211 (2009), pp. 198-210
[31] On new inequalities for h-convex functions via Riemann-Liouville fractional integration, Filomat, Volume 27 (2013), pp. 559-565
Cité par Sources :