Some new inequalities for (k,s)-fractional integrals
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 9, p. 5374-5381.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, the (k; s)-fractional integral operator is used to generate new classes of integral inequalities using a family of n positive functions, $(n \in \mathbb{N} )$. Two classes of integral inequalities involving the (k; s)- fractional integral operator are derived here and these results allow us in particular to generalize some classical inequalities. Certain interesting consequent results of the main theorems are also pointed out.
DOI : 10.22436/jnsa.009.09.06
Classification : 26A33, 26D10, 26D15
Keywords: Integral inequalities, fractional integral inequalities, (k،s)-fractional integrals.

Aldhaifallah, M. 1 ; Tomar, M. 2 ; Nisar, K. S. 3 ; Purohit, S. D. 4

1 Electrical Engineering Department, College of Engineering-Wadi Aldawaser, Prince Sattam bin Abdulaziz University, Riyadh region 11991, Saudi Arabia
2 Department of Mathematics, Faculty of Science and Arts, Ordu University, Ordu, Turkey
3 Department of Mathematics, College of Arts and Science- Wadi Al-Dawaser, Prince Sattam bin Abdulaziz University, Riyadh region 11991, Saudi Arabia
4 Department of HEAS (Mathematics), Rajasthan Technical University, Kota-324010, India
@article{JNSA_2016_9_9_a5,
     author = {Aldhaifallah, M. and Tomar, M. and Nisar, K. S. and Purohit, S. D.},
     title = {Some new inequalities for (k,s)-fractional integrals},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5374-5381},
     publisher = {mathdoc},
     volume = {9},
     number = {9},
     year = {2016},
     doi = {10.22436/jnsa.009.09.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.06/}
}
TY  - JOUR
AU  - Aldhaifallah, M.
AU  - Tomar, M.
AU  - Nisar, K. S.
AU  - Purohit, S. D.
TI  - Some new inequalities for (k,s)-fractional integrals
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5374
EP  - 5381
VL  - 9
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.06/
DO  - 10.22436/jnsa.009.09.06
LA  - en
ID  - JNSA_2016_9_9_a5
ER  - 
%0 Journal Article
%A Aldhaifallah, M.
%A Tomar, M.
%A Nisar, K. S.
%A Purohit, S. D.
%T Some new inequalities for (k,s)-fractional integrals
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5374-5381
%V 9
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.06/
%R 10.22436/jnsa.009.09.06
%G en
%F JNSA_2016_9_9_a5
Aldhaifallah, M.; Tomar, M.; Nisar, K. S.; Purohit, S. D. Some new inequalities for (k,s)-fractional integrals. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 9, p. 5374-5381. doi : 10.22436/jnsa.009.09.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.06/

[1] Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Thermal Sci., Volume 20 (2016), pp. 763-769

[2] Baleanu, D.; Agarwal, P.; Purohit, S. D. Certain fractional integral formulas involving the product of generalized Bessel functions, Sci. World J., Volume 2013 (2013), pp. 1-9

[3] Baleanu, D.; Kumar, D.; Purohit, S. D. Generalized fractional integrals of product of two H-functions and a general class of polynomials, Int. J. Comput. Math., Volume 93 (2016), pp. 1320-1329

[4] Baleanu, D.; Purohit, S. D. Chebyshev type integral inequalities involving the fractional hypergeometric operators, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-10

[5] Baleanu, D.; Purohit, S. D.; Agarwal, P. On fractional integral inequalities involving hypergeometric operators, Chin. J. Math. (N.Y.), Volume 2014 (2014), pp. 1-5

[6] Choi, J. S.; Purohit, S. D. A Grüss type integral inequality associated with gauss hypergeometric function fractional integral operator,, Commun. Korean Math. Soc., Volume 30 (2015), pp. 81-92

[7] Dahmani, Z. New classes of integral inequalities of fractional order,, Matematiche (Catania), Volume 69 (2014), pp. 237-247

[8] Dahmani, Z.; Tabharit, L.; Taf, S. New generalisations of Grüss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., Volume 2 (2010), pp. 93-99

[9] Díaz, R.; Pariguan, E. On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat., Volume 15 (2007), pp. 179-192

[10] o, R. Goren; Mainardi, F. Fractional calculus: integral and differential equations of fractional order, Fractals and fractional calculus in continuum mechanics, Udine, (1996), 223-276, CISM Courses and Lectures, Springer, Vienna, 1997

[11] Hadamard, J. Essai sur l'etude des fonctions, donnees par leur developpement de Taylor, J. Mat. Pure Appl. Ser. 4, Volume 8 (1892), pp. 101-186

[12] Katugampola, U. N. New approach to a generalized fractional integral, Appl. Math. Comput., Volume 218 (2011), pp. 860-865

[13] Katugampola, U. N. Mellin transforms of generalized fractional integrals and derivatives, Appl. Math. Comput., Volume 257 (2015), pp. 566-580

[14] Kilbas, A. A.; Saigo, M.; Saxena, R. K. Generalized Mittag-Leffler function and generalized fractional calculus operators, Integral Transforms Spec. Funct., Volume 15 (2004), pp. 31-49

[15] Kiryakova, V. Generalized fractional calculus and applications, Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1994

[16] Latif, M. A.; Hussain, S. New inequalities of Ostrowski type for co-ordinated convex functions via fractional integrals, J. Fract. Calc. Appl., Volume 2 (2012), pp. 1-15

[17] Liu, W. J.; Ngô, Q. A.; Huy, V. N. Several interesting integral inequalities, J. Math. Inequal., Volume 10 (2009), pp. 201-212

[18] Miller, K. S.; Ross, B. An introduction to the fractional calculus and fractional differential equations, A Wiley- Interscience Publication. John Wiley & Sons, Inc., New York, 1993

[19] Mitrinović, D. S.; Pečarić, J. E.; Fink, A. M. Classical and new inequalities in analysis, Mathematics and its Applications (East European Series), Kluwer Academic Publishers Group, Dordrecht, 1993

[20] Mubeen, S.; Habibullah, G. M. k-fractional integrals and application, Int. J. Contemp. Math. Sci., Volume 7 (2012), pp. 89-94

[21] Ntouyas, S. K.; Purohit, S. D.; Tariboon, J. Certain Chebyshev type integral inequalities involving Hadamard's fractional operators, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-7

[22] Purohit, S. D. Solutions of fractional partial differential equations of quantum mechanics, Adva. Appl. Math. Mech., Volume 5 (2013), pp. 639-651

[23] Purohit, S. D.; Kalla, S. L. On fractional partial differential equations related to quantum mechanics, J. Phys. A, Volume 44 (2011), pp. 1-8

[24] Purohit, S. D.; Kalla, S. L. Certain inequalities related to the Chebyshevs functional involving Erdélyi-Kober operators, Scientia, Ser. A, Math. Sci., Volume 25 (2014), pp. 56-63

[25] Purohit, S. D.; Raina, R. K. Chebyshev type inequalities for the Saigo fractional integrals and their q-analogues, J. Math. Inequal., Volume 7 (2013), pp. 239-249

[26] Purohit, S. D.; Raina, R. K. Certain fractional integral inequalities involving the Gauss hypergeometric function, Rev. TéK. Ing. Univ. Zulia, Volume 37 (2014), pp. 167-175

[27] Purohit, S. D.; Uçar, F.; Yadav, R. K. On fractional integral inequalities and their q-analogues, Revista Tecnocientifica URU, Volume 6 (2013), pp. 53-66

[28] Sarikaya, M. Z.; Dahmani, Z.; Kiris, M. E.; Ahmad, F. (k; s)-Riemann-Liouville fractional integral and applications, Hacet. J. Math. Stat., Volume 45 (2016), pp. 77-89

[29] Set, E.; Tomar, M.; Sarikaya, M. Z. On generalized Grüss type inequalities for k-fractional integrals, Appl. Math. Comput., Volume 269 (2015), pp. 29-34

[30] Srivastava, H. M.; Tomovski, Z. Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput., Volume 211 (2009), pp. 198-210

[31] Tunç, M. On new inequalities for h-convex functions via Riemann-Liouville fractional integration, Filomat, Volume 27 (2013), pp. 559-565

Cité par Sources :