Voir la notice de l'article provenant de la source International Scientific Research Publications
Mutlu, Ali 1 ; Gürdal, Utku 1
@article{JNSA_2016_9_9_a4, author = {Mutlu, Ali and G\"urdal, Utku}, title = {Bipolar metric spaces and some fixed point theorems}, journal = {Journal of nonlinear sciences and its applications}, pages = {5362-5373}, publisher = {mathdoc}, volume = {9}, number = {9}, year = {2016}, doi = {10.22436/jnsa.009.09.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.05/} }
TY - JOUR AU - Mutlu, Ali AU - Gürdal, Utku TI - Bipolar metric spaces and some fixed point theorems JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 5362 EP - 5373 VL - 9 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.05/ DO - 10.22436/jnsa.009.09.05 LA - en ID - JNSA_2016_9_9_a4 ER -
%0 Journal Article %A Mutlu, Ali %A Gürdal, Utku %T Bipolar metric spaces and some fixed point theorems %J Journal of nonlinear sciences and its applications %D 2016 %P 5362-5373 %V 9 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.05/ %R 10.22436/jnsa.009.09.05 %G en %F JNSA_2016_9_9_a4
Mutlu, Ali; Gürdal, Utku. Bipolar metric spaces and some fixed point theorems. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 9, p. 5362-5373. doi : 10.22436/jnsa.009.09.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.05/
[1] Fixed point theory for cyclic generalized contractions in partial metric spaces, Fixed Point Theory and Appl., Volume 2012 (2012), pp. 1-11
[2] On generalized weak G-contraction mapping in G-metric spaces, Comput. Math. Appl., Volume 62 (2011), pp. 4222-4229
[3] Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., Volume 3 (1922), pp. 133-181
[4] Encyclopedia of distances, Springer-Verlag, Berlin, 2009
[5] Sur quelques points du calcul fonctionnel, Rendiconti del Circolo Matematico di Palermo, Volume 22 (1906), pp. 1-72
[6] Generalized metrics and topology in logic programming semantics, Ph.D. Thesis, Department of Mathematics, National University of Ireland, University College, Cork, 2001
[7] Some results on fixed points, Bull. Calcutta Math. Soc., Volume 60 (1968), pp. 71-76
[8] A new approach to generalized metric spaces, J. Nonlinear Convex Anal., Volume 7 (2006), pp. 289-297
[9] An infinite dimensional fixed point theorem on function spaces of ordered metric spaces, Kuwait J. Sci., Volume 42 (2015), pp. 36-49
Cité par Sources :