Bipolar metric spaces and some fixed point theorems
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 9, p. 5362-5373.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper we introduce the concept of bipolar metric space as a type of partial distance. We explore the link between metric spaces and bipolar metric spaces, especially in the context of completeness, and prove some extensions of known fixed point theorems.
DOI : 10.22436/jnsa.009.09.05
Classification : 54E50, 54H25
Keywords: Fixed point, completeness, contraction, metric space, bipolar metric space.

Mutlu, Ali 1 ; Gürdal, Utku 1

1 Department of Mathematics, Celal Bayar University, 45110, Yunusemre, Manisa, Turkey
@article{JNSA_2016_9_9_a4,
     author = {Mutlu, Ali and G\"urdal, Utku},
     title = {Bipolar metric spaces and some fixed point theorems},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5362-5373},
     publisher = {mathdoc},
     volume = {9},
     number = {9},
     year = {2016},
     doi = {10.22436/jnsa.009.09.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.05/}
}
TY  - JOUR
AU  - Mutlu, Ali
AU  - Gürdal, Utku
TI  - Bipolar metric spaces and some fixed point theorems
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5362
EP  - 5373
VL  - 9
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.05/
DO  - 10.22436/jnsa.009.09.05
LA  - en
ID  - JNSA_2016_9_9_a4
ER  - 
%0 Journal Article
%A Mutlu, Ali
%A Gürdal, Utku
%T Bipolar metric spaces and some fixed point theorems
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5362-5373
%V 9
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.05/
%R 10.22436/jnsa.009.09.05
%G en
%F JNSA_2016_9_9_a4
Mutlu, Ali; Gürdal, Utku. Bipolar metric spaces and some fixed point theorems. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 9, p. 5362-5373. doi : 10.22436/jnsa.009.09.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.05/

[1] Agarwal, R. P.; Alghamdi, M. A.; Shahzad, N. Fixed point theory for cyclic generalized contractions in partial metric spaces, Fixed Point Theory and Appl., Volume 2012 (2012), pp. 1-11

[2] Aydi, H.; Shatanawi, W.; Vetro, C. On generalized weak G-contraction mapping in G-metric spaces, Comput. Math. Appl., Volume 62 (2011), pp. 4222-4229

[3] Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., Volume 3 (1922), pp. 133-181

[4] Deza, M. M.; Deza, E. Encyclopedia of distances, Springer-Verlag, Berlin, 2009

[5] Fréchet, M. M. Sur quelques points du calcul fonctionnel, Rendiconti del Circolo Matematico di Palermo, Volume 22 (1906), pp. 1-72

[6] Hitzler, P. Generalized metrics and topology in logic programming semantics, Ph.D. Thesis, Department of Mathematics, National University of Ireland, University College, Cork, 2001

[7] Kannan, R. Some results on fixed points, Bull. Calcutta Math. Soc., Volume 60 (1968), pp. 71-76

[8] Mustafa, Z.; Sims, B. A new approach to generalized metric spaces, J. Nonlinear Convex Anal., Volume 7 (2006), pp. 289-297

[9] Mutlu, A.; Gürdal, U. An infinite dimensional fixed point theorem on function spaces of ordered metric spaces, Kuwait J. Sci., Volume 42 (2015), pp. 36-49

Cité par Sources :