Voir la notice de l'article provenant de la source International Scientific Research Publications
$f(x + y + z) + f(x - y) + f(x - z) + f(y - z) = 3[f(x) + f(y) + f(z)],$ |
EL-Fassi, Iz-iddine 1 ; Kim, Gwang Hui 2
@article{JNSA_2016_9_9_a3, author = {EL-Fassi, Iz-iddine and Kim, Gwang Hui}, title = {Hyperstability of a quadratic functional equation on abelian group and inner product spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {5353-5361}, publisher = {mathdoc}, volume = {9}, number = {9}, year = {2016}, doi = {10.22436/jnsa.009.09.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.04/} }
TY - JOUR AU - EL-Fassi, Iz-iddine AU - Kim, Gwang Hui TI - Hyperstability of a quadratic functional equation on abelian group and inner product spaces JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 5353 EP - 5361 VL - 9 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.04/ DO - 10.22436/jnsa.009.09.04 LA - en ID - JNSA_2016_9_9_a3 ER -
%0 Journal Article %A EL-Fassi, Iz-iddine %A Kim, Gwang Hui %T Hyperstability of a quadratic functional equation on abelian group and inner product spaces %J Journal of nonlinear sciences and its applications %D 2016 %P 5353-5361 %V 9 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.04/ %R 10.22436/jnsa.009.09.04 %G en %F JNSA_2016_9_9_a3
EL-Fassi, Iz-iddine; Kim, Gwang Hui. Hyperstability of a quadratic functional equation on abelian group and inner product spaces. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 9, p. 5353-5361. doi : 10.22436/jnsa.009.09.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.04/
[1] On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan., Volume 2 (1950), pp. 64-66
[2] On the stability of 3-dimensional quadratic functional equation, Bull. Korean Math. Soc., Volume 37 (2000), pp. 477-486
[3] On the generalized Hyers-Ulam-Rassias stability of a quadratic functional equation, Bull. Korean Math. Soc., Volume 38 (2011), pp. 325-336
[4] The Hyers-Ulam stability of the quadratic functional equations on abelian groups, Bull. Korean Math. Soc., Volume 39 (2002), pp. 199-209
[5] Hyperstability of the Jensen functional equation, Acta Math. Hungar., Volume 142 (2014), pp. 353-365
[6] Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J., Volume 16 (1949), pp. 385-397
[7] Hyperstability of the Cauchy equation on restricted domains, Acta Math. Hungar., Volume 141 (2013), pp. 58-67
[8] Remarks on hyperstability of the Cauchy functional equation, Aequationes Math., Volume 86 (2013), pp. 255-267
[9] A hyperstability result for the Cauchy equation, Bull. Aust. Math. Soc., Volume 89 (2014), pp. 33-40
[10] A fixed point approach to stability of functional equations, Nonlinear Anal., Volume 74 (2011), pp. 6728-6732
[11] Hyperstability and superstability, Abstr. Appl. Anal., Volume 2013 (2013), pp. 1-13
[12] On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, Volume 62 (1992), pp. 59-64
[13] On the hyperstability of a Cauchy-Jensen type functional equation in Banach spaces, Proyecciones, Volume 34 (2015), pp. 359-375
[14] On stability of additive mappings, Internat. J. Math. Math. Sci., Volume 14 (1991), pp. 431-434
[15] A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., Volume 184 (1994), pp. 431-436
[16] Hyperstability of a functional equation, Acta Math. Hungar., Volume 124 (2009), pp. 179-188
[17] On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A, Volume 27 (1941), pp. 222-224
[18] On the Hyers-Ulam-Rassias stability of a quadratic functional equation, J. Math. Anal. Appl., Volume 232 (1999), pp. 384-393
[19] Quadratic functional equation and inner product spaces, Results Math., Volume 27 (1995), pp. 368-372
[20] Hyperstability of a class of linear functional equations, Acta Math. Acad. Paedagog. Nyhzi. (N.S.), Volume 17 (2001), pp. 107-112
[21] fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc. (N.S.), Volume 37 (2006), pp. 361-376
[22] Remark on hyperstability of the general linear equation, Aequationes Math., Volume 88 (2013), pp. 163-168
[23] On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., Volume 72 (1978), pp. 297-300
[24] On a modified Hyers-Ulam sequence, J. Math. Anal. Appl., Volume 158 (1991), pp. 106-113
[25] On the stability of the Euler-Lagrange functional equation, Chinese J. Math., Volume 20 (1992), pp. 185-190
[26] On the stability of the quadratic functional equation and its applications, Studia Univ. Babe-Bolyai Math., Volume 43 (1998), pp. 89-124
[27] On the stability of functional equations in Banach spaces, J. Math. Anal. Appl., Volume 251 (2000), pp. 264-284
[28] On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc., Volume 114 (1992), pp. 989-993
[29] Problems in modern mathematics, Science Editions John Wiley & Sons, Inc., New York, 1960
Cité par Sources :