Voir la notice de l'article provenant de la source International Scientific Research Publications
$\|f(x + y)+f(x - y) - 2f(x) - 2f(y)\| \leq\|\rho(2f(\frac{x + y}{2}) + 2f(\frac{x - y}{2}) - f(x) - f(y))\|,$ |
$\|2f(\frac{x + y}{2}) + 2f(\frac{x - y}{2}) - f(x) - f(y)\| \leq\|\rho(f(x + y)+f(x - y) - 2f(x) - 2f(y)\|,$ |
Wang, Zhihua 1 ; Park, Choonkil 2
@article{JNSA_2016_9_9_a2, author = {Wang, Zhihua and Park, Choonkil}, title = {Quadratic \(\rho\)-functional inequalities in complex matrix normed spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {5344-5352}, publisher = {mathdoc}, volume = {9}, number = {9}, year = {2016}, doi = {10.22436/jnsa.009.09.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.03/} }
TY - JOUR AU - Wang, Zhihua AU - Park, Choonkil TI - Quadratic \(\rho\)-functional inequalities in complex matrix normed spaces JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 5344 EP - 5352 VL - 9 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.03/ DO - 10.22436/jnsa.009.09.03 LA - en ID - JNSA_2016_9_9_a2 ER -
%0 Journal Article %A Wang, Zhihua %A Park, Choonkil %T Quadratic \(\rho\)-functional inequalities in complex matrix normed spaces %J Journal of nonlinear sciences and its applications %D 2016 %P 5344-5352 %V 9 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.03/ %R 10.22436/jnsa.009.09.03 %G en %F JNSA_2016_9_9_a2
Wang, Zhihua; Park, Choonkil. Quadratic \(\rho\)-functional inequalities in complex matrix normed spaces. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 9, p. 5344-5352. doi : 10.22436/jnsa.009.09.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.03/
[1] On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, Volume 2 (1950), pp. 64-66
[2] Remarks on the stability of functional equations, Aequationes Math., Volume 27 (1984), pp. 76-86
[3] On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, Volume 62 (1992), pp. 59-64
[4] A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., Volume 184 (1994), pp. 431-436
[5] On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A., Volume 27 (1941), pp. 222-224
[6] Fuzzy stability of Jensen-type quadratic functional equations, Abstr. Appl. Anal., Volume 2009 (2009), pp. 1-17
[7] An AQCQ-functional equation in matrix normed spaces, Results Math., Volume 64 (2013), pp. 305-318
[8] Hyers-Ulam stability of functional equations in matrix normed spaces, J. Inequal. Appl., Volume 2013 (2013), pp. 1-11
[9] Quadratic \(\rho\)-functional inequalities in non-Archimedean normed spaces, Izv. Nats. Akad. Nauk Armenii Mat., 50 (2015), 68-80, translation in J. Contemp. Math. Anal., Volume 50 (2015), pp. 187-195
[10] Functional equations and inequalities in matrix paranormed spaces, J. Inequal. Appl., Volume 2013 (2013), pp. 1-13
[11] On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., Volume 72 (1978), pp. 297-300
[12] Local properties and approximation of operators, (Italian) Geometry of Banach spaces and related topics, Italian, Milan, (1983), Rend. Sem. Mat. Fis. Milano, Volume 53 (1983), pp. 113-129
[13] Problems in modern mathematics, Science Editions John Wiley & Sons, Inc., New York, 1964
[14] Intuitionistic fuzzy stability of Jensen-type quadratic functional equations, Filomat, Volume 28 (2014), pp. 663-676
Cité par Sources :