Quadratic $\rho$-functional inequalities in complex matrix normed spaces
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 9, p. 5344-5352.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we solve the following quadratic $\rho$ -functional inequalities
$\|f(x + y)+f(x - y) - 2f(x) - 2f(y)\| \leq\|\rho(2f(\frac{x + y}{2}) + 2f(\frac{x - y}{2}) - f(x) - f(y))\|,$
where $\rho$ is a fixed complex number with $|\rho| 1$, and
$\|2f(\frac{x + y}{2}) + 2f(\frac{x - y}{2}) - f(x) - f(y)\| \leq\|\rho(f(x + y)+f(x - y) - 2f(x) - 2f(y)\|,$
where $\rho$ is a fixed complex number with $|\rho| \frac{ 1}{2}$ . By using the direct method, we prove the Hyers-Ulam stability of these inequalities in complex matrix normed spaces, and prove the Hyers-Ulam stability of quadratic $\rho$-functional equations associated with these inequalities in complex matrix normed spaces.
DOI : 10.22436/jnsa.009.09.03
Classification : 39B62, 39B82, 39B52
Keywords: Hyers-Ulam stability, matrix normed space, quadratic \(\rho\)-functional equation, quadratic \(\rho\)-functional inequality.

Wang, Zhihua 1 ; Park, Choonkil 2

1 School of Science, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China
2 Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
@article{JNSA_2016_9_9_a2,
     author = {Wang, Zhihua and Park, Choonkil},
     title = {Quadratic \(\rho\)-functional inequalities in complex matrix normed spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5344-5352},
     publisher = {mathdoc},
     volume = {9},
     number = {9},
     year = {2016},
     doi = {10.22436/jnsa.009.09.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.03/}
}
TY  - JOUR
AU  - Wang, Zhihua
AU  - Park, Choonkil
TI  - Quadratic \(\rho\)-functional inequalities in complex matrix normed spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5344
EP  - 5352
VL  - 9
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.03/
DO  - 10.22436/jnsa.009.09.03
LA  - en
ID  - JNSA_2016_9_9_a2
ER  - 
%0 Journal Article
%A Wang, Zhihua
%A Park, Choonkil
%T Quadratic \(\rho\)-functional inequalities in complex matrix normed spaces
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5344-5352
%V 9
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.03/
%R 10.22436/jnsa.009.09.03
%G en
%F JNSA_2016_9_9_a2
Wang, Zhihua; Park, Choonkil. Quadratic \(\rho\)-functional inequalities in complex matrix normed spaces. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 9, p. 5344-5352. doi : 10.22436/jnsa.009.09.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.09.03/

[1] Aoki, T. On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, Volume 2 (1950), pp. 64-66

[2] Cholewa, P. W. Remarks on the stability of functional equations, Aequationes Math., Volume 27 (1984), pp. 76-86

[3] Czerwik, St. On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, Volume 62 (1992), pp. 59-64

[4] Găvruţa, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., Volume 184 (1994), pp. 431-436

[5] Hyers, D. H. On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A., Volume 27 (1941), pp. 222-224

[6] Jang, S.-Y.; Lee, J. R.; Park, C. K.; Shin, D. Y. Fuzzy stability of Jensen-type quadratic functional equations, Abstr. Appl. Anal., Volume 2009 (2009), pp. 1-17

[7] Lee, J. R.; Park, C. K.; Shin, D. Y. An AQCQ-functional equation in matrix normed spaces, Results Math., Volume 64 (2013), pp. 305-318

[8] Lee, J. R.; Shin, D. Y.; Park, C. K. Hyers-Ulam stability of functional equations in matrix normed spaces, J. Inequal. Appl., Volume 2013 (2013), pp. 1-11

[9] Park, C. K. Quadratic \(\rho\)-functional inequalities in non-Archimedean normed spaces, Izv. Nats. Akad. Nauk Armenii Mat., 50 (2015), 68-80, translation in J. Contemp. Math. Anal., Volume 50 (2015), pp. 187-195

[10] Park, C. K.; Lee, J. R.; Shin, D. Y. Functional equations and inequalities in matrix paranormed spaces, J. Inequal. Appl., Volume 2013 (2013), pp. 1-13

[11] Rassias, Th. M. On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., Volume 72 (1978), pp. 297-300

[12] Skof, F. Local properties and approximation of operators, (Italian) Geometry of Banach spaces and related topics, Italian, Milan, (1983), Rend. Sem. Mat. Fis. Milano, Volume 53 (1983), pp. 113-129

[13] Ulam, S. M. Problems in modern mathematics, Science Editions John Wiley & Sons, Inc., New York, 1964

[14] Wang, Z.; Rassias, Th. M.; Saadati, R. Intuitionistic fuzzy stability of Jensen-type quadratic functional equations, Filomat, Volume 28 (2014), pp. 663-676

Cité par Sources :