Multivalent guiding functions in the bifurcation problem of differential inclusions
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 8, p. 5259-5270.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper we use the multivalent guiding functions method to study the bifurcation problem for differential inclusions with convex-valued right-hand part satisfying the upper Carathéodory and the sublinear growth conditions.
DOI : 10.22436/jnsa.009.08.12
Classification : 34A60, 34C25, 34C23
Keywords: Differential inclusion, bifurcation of periodic solution, multivalent guiding function, topological degree.

Kornev, Sergey 1 ; Liou, Yeong-Cheng 2

1 Faculty of Physics and Mathematics, Voronezh State Pedagogical University, Lenina 86, 394043 Voronezh, Russia
2 Department of Healthcare Administration and Medical Informatics; and Research Center of Nonlinear Analysis and Optimization and Center for Fundamental Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
@article{JNSA_2016_9_8_a11,
     author = {Kornev, Sergey and Liou, Yeong-Cheng},
     title = {Multivalent guiding functions in the bifurcation problem of differential inclusions},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5259-5270},
     publisher = {mathdoc},
     volume = {9},
     number = {8},
     year = {2016},
     doi = {10.22436/jnsa.009.08.12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.12/}
}
TY  - JOUR
AU  - Kornev, Sergey
AU  - Liou, Yeong-Cheng
TI  - Multivalent guiding functions in the bifurcation problem of differential inclusions
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5259
EP  - 5270
VL  - 9
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.12/
DO  - 10.22436/jnsa.009.08.12
LA  - en
ID  - JNSA_2016_9_8_a11
ER  - 
%0 Journal Article
%A Kornev, Sergey
%A Liou, Yeong-Cheng
%T Multivalent guiding functions in the bifurcation problem of differential inclusions
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5259-5270
%V 9
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.12/
%R 10.22436/jnsa.009.08.12
%G en
%F JNSA_2016_9_8_a11
Kornev, Sergey; Liou, Yeong-Cheng. Multivalent guiding functions in the bifurcation problem of differential inclusions. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 8, p. 5259-5270. doi : 10.22436/jnsa.009.08.12. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.12/

[1] Aleksandrov, P. S.; Pasynkov, B. A. Vvedenie v teoriyu razmernosti: Vvedenie v teoriyu topologicheskikh prostranstv i obshchuyu teoriyu razmernosti, (Russian), [Introduction to dimension theory: An introduction to the theory of topological spaces and the general theory of dimension], Izdat. ''Nauka'', Moscow, 1973

[2] Borisovich, Y. G.; Gel'man, B. D.; Myshkis, A. D.; Obukhovskiĭ, V. V. Introduction to the theory of multivalued maps and differential inclusions, (Russian) 2nd Ed., Librokom, Moscow, 2011

[3] K. Deimling Multivalued differential equations, de Gruyter Series in Nonlinear Analysis and Applications, Walter de Gruyter and Co., Berlin, 1992

[4] Fryszkowski, A. Fixed point theory for decomposable sets, Topological Fixed Point Theory and Its Applications, Kluwer Academic Publishers, Dordrecht, 2004

[5] L. Górniewicz Topological fixed point theory of multivalued mappings, Second edition, Topological Fixed Point Theory and Its Applications, Springer, Dordrecht, 2000

[6] Kamenskii, M.; Obukhovskiĭ, V. V.; Zecca, P. Condensing multivalued maps and semilinear differential inclusions in Banach spaces, De Gruyter Series in Nonlinear Analysis and Applications, Walter de Gruyter and Co., Berlin, 2001

[7] Kornev, S. V. On the method of multivalent guiding functions for periodic solution of differential inclusions, Autom. Remote Control, Volume 64 (2003), pp. 409-419

[8] Kornev, S. V. Nonsmooth integral directing functions in the problems of forced oscillations, Translation of Avtomat. i Telemekh, (2015), 31-43, Autom. Remote Control, Volume 76 (2015), pp. 1541-1550

[9] Kornev, S. V. The method of generalized integral guiding function in the periodic problem of differential inclusions, (Russian) The Bulletin of Irkutsk State University. Mathematics, Volume 13 (2015), pp. 16-31

[10] S. V. Kornev Multivalent guiding function in a problem on existence of periodic solutions of some classes of differential inclusions, Izv. Vyssh. Uchebn. Zaved. Mat., Volume 11 (2016), pp. 14-26

[11] S. V. Kornev On asymptotics of solutions for differential inclusions with nonconvex right-hand side, (Russian) The Bulletin of Voronezh State University. Phisics. Mathematics, Volume 1 (2016), pp. 96-104

[12] Kornev, S. V.; V. V. Obukhovskiĭ On nonsmooth multivalent guiding functions, (Russian) Differ. Uravn., 39 (2003), 1497-1502, translation in Differ. Equ., Volume 39 (2003), pp. 1578-1584

[13] Kornev, S. V.; Obukhovskiĭ, V. V. On some developments of the method of integral guiding functions, Funct. Differ. Equ., Volume 12 (2005), pp. 303-310

[14] Kornev, S. V.; Obukhovskiĭ, V. V. Asymptotic behavior of solutions of differential inclusions and the method of guiding functions, Translation of Differ. Uravn., 51 (2015), 700-705, Differ. Equ., Volume 51 (2015), pp. 711-716

[15] Kornev, S. V.; Obukhovskiĭ, V. V.; Yao, J.-C. On asymptotics of solutions for a class of functional differential inclusions, Discuss. Math. Differ. Incl. Control Optim., Volume 34 (2014), pp. 219-227

[16] Kornev, S. V.; Obukhovskiĭ, V. V.; Zecca, P. Guiding functions and periodic solutions for inclusions with causal multioperators, Appl. Anal., Volume 2016 (2016), pp. 1-11

[17] M. A. Krasnosel'skiĭ The operator of translation along the trajectories of differential equations, Translations of Mathematical Monographs, Translated from the Russian by Scripta Technica, American Mathematical Society, Providence, R.I., 1968

[18] Krasnosel'skiĭ, M. A.; A. I. Perov On a certain principle of existence of bounded, periodic and almost periodic solutions of systems of ordinary differential equations, (Russian) Dokl. Akad. Nauk SSSR, Volume 123 (1958), pp. 235-238

[19] Krasnosel'skiĭ, M. A.; Zabreĭko, P. P. Geometrical methods of nonlinear analysis, Translated from the Russian by Christian C. Fenske, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1984

[20] Kryszewski, W. Homotopy Properties of Set-Valued in Mappings, University Nicholas Copernicus Publishing, Toruń, 1997

[21] Liu, Z.; Loi, N. V.; V. V. Obukhovskiĭ Existence and global bifurcation of periodic solutions to a class of differential variational inequalities, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 23 (2013), pp. 1-10

[22] Loi, N. V.; Liu, Z.; V. V. Obukhovskiĭ On an A-bifurcation theorem with application to a parameterized integro- differential system, Fixed Point Theory, Volume 16 (2015), pp. 127-141

[23] Loi, N. V.; Obukhovskiĭ, V. V.; Yao, J.-C. A bifurcation of solutions of nonlinear Fredholm inclusions involving CJ-multimaps with applications to feedback control systems, Set-Valued Var. Anal., Volume 21 (2013), pp. 247-269

[24] Loi, N. V.; Obukhovskiĭ, V. V.; Yao, J.-C. A multiparameter global bifurcation theorem with application to a feedback control system, Fixed Point Theory, Volume 16 (2015), pp. 353-370

[25] Obukhovskiĭ, V. V.; Kamenskiĭ, M.; Kornev, S. V.; Liou, Y.-C. On asymptotics of solutions for some classes of differential inclusions via the generalized guiding functions method, submitted to J. Nonlin. Conv. Anal., , 2016

[26] Obukhovskiĭ, V. V.; Loi, N. V.; Kornev, S. V. Existence and global bifurcation of solutions for a class of operator- differential inclusions, Differ. Equ. Dyn. Syst., Volume 20 (2012), pp. 285-300

[27] Obukhovskiĭ, V. V.; Zecca, P.; Loi, N. V.; Kornev, S. V. Method of guiding functions in problems of nonlinear analysis, Lecture Notes in Mathematics, Springer, Heidelberg, 2013

[28] Rachinskiĭ, D. I. Multivalent guiding functions in forced oscillation problems, Nonlinear Anal., Volume 26 (1996), pp. 631-639

Cité par Sources :