Voir la notice de l'article provenant de la source International Scientific Research Publications
Tang, Xianzhi 1 ; Cui, Huanhuan 2
@article{JNSA_2016_9_8_a10, author = {Tang, Xianzhi and Cui, Huanhuan}, title = {Strong convergence theorem for common solutions to quasi variational inclusion and fixed point problems}, journal = {Journal of nonlinear sciences and its applications}, pages = {5252-5258}, publisher = {mathdoc}, volume = {9}, number = {8}, year = {2016}, doi = {10.22436/jnsa.009.08.11}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.11/} }
TY - JOUR AU - Tang, Xianzhi AU - Cui, Huanhuan TI - Strong convergence theorem for common solutions to quasi variational inclusion and fixed point problems JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 5252 EP - 5258 VL - 9 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.11/ DO - 10.22436/jnsa.009.08.11 LA - en ID - JNSA_2016_9_8_a10 ER -
%0 Journal Article %A Tang, Xianzhi %A Cui, Huanhuan %T Strong convergence theorem for common solutions to quasi variational inclusion and fixed point problems %J Journal of nonlinear sciences and its applications %D 2016 %P 5252-5258 %V 9 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.11/ %R 10.22436/jnsa.009.08.11 %G en %F JNSA_2016_9_8_a10
Tang, Xianzhi; Cui, Huanhuan. Strong convergence theorem for common solutions to quasi variational inclusion and fixed point problems. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 8, p. 5252-5258. doi : 10.22436/jnsa.009.08.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.11/
[1] A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Problems, Volume 20 (2004), pp. 103-120
[2] Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 957-961
[3] Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings, Nonlinear Anal., Volume 61 (2005), pp. 341-350
[4] Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., Volume 241 (2000), pp. 46-55
[5] Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., Volume 128 (2006), pp. 191-201
[6] Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., Volume 118 (2003), pp. 417-428
[7] Approximation of fixed points of nonexpansive mappings, Arch. Math. (Basel), Volume 58 (1992), pp. 486-491
[8] Iterative algorithms for nonlinear operators, J. London Math. Soc. (2), Volume 66 (2002), pp. 240-256
[9] Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl., Volume 298 (2004), pp. 279-291
[10] Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems, Taiwanese J. Math., Volume 10 (2006), pp. 1293-1303
[11] Algorithms of common solutions to quasi variational inclusion and fixed point problems, Appl. Math. Mech. (English Ed.), Volume 29 (2008), pp. 571-581
Cité par Sources :