Strong convergence theorem for common solutions to quasi variational inclusion and fixed point problems
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 8, p. 5252-5258.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we consider a problem that consists of finding a common solution to quasi variational inclusion and fixed point problems. We first present a simple proof to the strong convergence theorem established by Zhang et al. recently. Next, we propose a new algorithm to solve such a problem. Under some mild conditions, we establish the strong convergence of iterative sequence of the proposed algorithm.
DOI : 10.22436/jnsa.009.08.11
Classification : 47J25, 47H05, 47H09, 47H04, 47J22
Keywords: Variational inclusion, fixed point problem, inverse strongly monotone operator, nonexpansive mapping, multi-valued maximal monotone mapping.

Tang, Xianzhi 1 ; Cui, Huanhuan 2

1 Department of of basic courses, Yellow River Conservancy Technical Institute, Kaifeng 475004, China
2 Department of Mathematics, Luoyang Normal University, Luoyang, 471022, China
@article{JNSA_2016_9_8_a10,
     author = {Tang, Xianzhi and Cui, Huanhuan},
     title = {Strong convergence theorem for common solutions to quasi variational inclusion and fixed point problems},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5252-5258},
     publisher = {mathdoc},
     volume = {9},
     number = {8},
     year = {2016},
     doi = {10.22436/jnsa.009.08.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.11/}
}
TY  - JOUR
AU  - Tang, Xianzhi
AU  - Cui, Huanhuan
TI  - Strong convergence theorem for common solutions to quasi variational inclusion and fixed point problems
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5252
EP  - 5258
VL  - 9
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.11/
DO  - 10.22436/jnsa.009.08.11
LA  - en
ID  - JNSA_2016_9_8_a10
ER  - 
%0 Journal Article
%A Tang, Xianzhi
%A Cui, Huanhuan
%T Strong convergence theorem for common solutions to quasi variational inclusion and fixed point problems
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5252-5258
%V 9
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.11/
%R 10.22436/jnsa.009.08.11
%G en
%F JNSA_2016_9_8_a10
Tang, Xianzhi; Cui, Huanhuan. Strong convergence theorem for common solutions to quasi variational inclusion and fixed point problems. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 8, p. 5252-5258. doi : 10.22436/jnsa.009.08.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.11/

[1] Byrne, C. A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Problems, Volume 20 (2004), pp. 103-120

[2] Halpern, B. Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 957-961

[3] Iiduka, H.; Takahashi, W. Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings, Nonlinear Anal., Volume 61 (2005), pp. 341-350

[4] Moudafi, A. Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., Volume 241 (2000), pp. 46-55

[5] Nadezhkina, N.; Takahashi, W. Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., Volume 128 (2006), pp. 191-201

[6] Takahashi, W.; Toyoda, M. Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., Volume 118 (2003), pp. 417-428

[7] Wittmann, R. Approximation of fixed points of nonexpansive mappings, Arch. Math. (Basel), Volume 58 (1992), pp. 486-491

[8] Xu, H.-K. Iterative algorithms for nonlinear operators, J. London Math. Soc. (2), Volume 66 (2002), pp. 240-256

[9] Xu, H.-K. Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl., Volume 298 (2004), pp. 279-291

[10] Zeng, L.-C.; Yao, J.-C. Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems, Taiwanese J. Math., Volume 10 (2006), pp. 1293-1303

[11] Zhang, S.-S.; Lee, J. H. W.; Chan, C. K. Algorithms of common solutions to quasi variational inclusion and fixed point problems, Appl. Math. Mech. (English Ed.), Volume 29 (2008), pp. 571-581

Cité par Sources :