Voir la notice de l'article provenant de la source International Scientific Research Publications
Alegre, Carmen 1 ; Dağ, Hacer 2 ; Romaguera, Salvador 3 ; Tirado, Pedro 1
@article{JNSA_2016_9_8_a9, author = {Alegre, Carmen and Da\u{g}, Hacer and Romaguera, Salvador and Tirado, Pedro}, title = {On the fixed point theory in bicomplete quasi-metric spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {5245-5251}, publisher = {mathdoc}, volume = {9}, number = {8}, year = {2016}, doi = {10.22436/jnsa.009.08.10}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.10/} }
TY - JOUR AU - Alegre, Carmen AU - Dağ, Hacer AU - Romaguera, Salvador AU - Tirado, Pedro TI - On the fixed point theory in bicomplete quasi-metric spaces JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 5245 EP - 5251 VL - 9 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.10/ DO - 10.22436/jnsa.009.08.10 LA - en ID - JNSA_2016_9_8_a9 ER -
%0 Journal Article %A Alegre, Carmen %A Dağ, Hacer %A Romaguera, Salvador %A Tirado, Pedro %T On the fixed point theory in bicomplete quasi-metric spaces %J Journal of nonlinear sciences and its applications %D 2016 %P 5245-5251 %V 9 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.10/ %R 10.22436/jnsa.009.08.10 %G en %F JNSA_2016_9_8_a9
Alegre, Carmen; Dağ, Hacer; Romaguera, Salvador; Tirado, Pedro. On the fixed point theory in bicomplete quasi-metric spaces. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 8, p. 5245-5251. doi : 10.22436/jnsa.009.08.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.10/
[1] Last remarks on G-metric spaces and related fixed point theorems, Rev. R. Acad. Cienc. Exactas Fıs. Nat. Ser. A Math. RACSAM, Volume 110 (2016), pp. 433-456
[2] Modified w-distances on quasi-metric spaces and a fixed point theorem on complete quasimetric spaces, Topology Appl., Volume 203 (2016), pp. 32-41
[3] A fixed point theorem for generalized contractions involving w-distances on complete quasi-metric spaces, Fixed Point Theory Appl., Volume 40 (2014), pp. 1-8
[4] Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory, Nonlinear Anal., Volume 69 (2008), pp. 126-139
[5] The space of formal balls and models of quasi-metric spaces, Math. Structures Comput. Sci., Volume 19 (2009), pp. 337-355
[6] On nonlinear contractions, Proc. Amer. Math. Soc., Volume 20 (1969), pp. 458-464
[7] On the convergence of successive approximations for nonlinear functional equations , Nederl. Akad. Wetensch. Proc. Ser. A Math., Volume 30 (1968), pp. 27-35
[8] Completeness in quasi-metric spaces and Ekeland Variational Principle, Topology Appl., Volume 158 (2011), pp. 1073-1084
[9] Functional analysis in asymmetric normed spaces, Frontiers in Mathematics, Birkhäuser/Springer Basel AG, Basel, 2013
[10] Some fixed point results for multivalued F-contractions on quasi metric spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, Volume 2016 (2016), pp. 1-11
[11] A generalisation of contraction principle in metric spaces , Fixed Point Theory Appl., Volume 2008 (2008), pp. 1-8
[12] Equivalence of some contractivity properties over metrical structures, Proc. Amer. Math. Soc., Volume 125 (1997), pp. 2327-2335
[13] Equivalent conditions for generalized contractions on (ordered) metric spaces, Nonlinear Anal., Volume 74 (2011), pp. 768-774
[14] Remarks on G-metric spaces and fixed point theorems, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-7
[15] On the weak form of Ekeland’s variational principle in quasi-metric spaces, Topology Appl., Volume 184 (2015), pp. 54-60
[16] Fixed point theorems by altering distances between the points, Bull. Austral. Math. Soc., Volume 30 (1984), pp. 1-9
[17] About the theory of equations with concave operators, (Russian) Sib. Mat. Zh., Volume 10 (1969), pp. 565-572
[18] Approximate solution of operator equations, Translated from the Russian by D. Louvish, Wolters-Noordhoff Publishing, Groningen, 1972
[19] Nonsymmetric distances and their associated topologies: about the origins of basic ideas in the area of asymmetric topology, Handbook of the history of general topology, Hist. Topol., Kluwer Acad. Publ., Dordrecht, Volume 3 (2001), pp. 853-968
[20] Fixed point results in quasimetric spaces, Fixed Point Theory Appl., Volume 2011 (2011), pp. 1-8
[21] Generalized contractive set-valued maps on complete preordered quasi-metric spaces, J. Funct. Spaces Appl., Volume 2013 (2013), pp. 1-6
[22] Integrable solutions of functional equations , Dissertationes Math. (Rozprawy Mat.), Volume 127 (1975), pp. 1-68
[23] Cauchy sequences in quasipseudometric spaces, Monatsh. Math., Volume 93 (1982), pp. 127-140
[24] Quasi-metric properties of complexity spaces, II Iberoamerican Conference on Topology and its Applications (Morelia, 1997), Topology Appl., Volume 98 (1999), pp. 311-322
[25] Complexity spaces as quantitative domains of computation, Topology Appl., Volume 158 (2011), pp. 853-860
[26] The complexity probabilistic quasi-metric space, J. Math. Anal. Appl., Volume 376 (2011), pp. 732-740
[27] A characterization of Smyth complete quasi-metric spaces via Caristi’s fixed point theorem, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-13
[28] Domain theoretic characterisations of quasi-metric completeness in terms of formal balls, Math. Structures Comput. Sci., Volume 20 (2010), pp. 453-472
Cité par Sources :