On the fixed point theory in bicomplete quasi-metric spaces
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 8, p. 5245-5251.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We show that some important fixed point theorems on complete metric spaces as Browder's fixed point theorem and Matkowski's fixed point theorem can be easily generalized to the framework of bicomplete quasi-metric spaces. From these generalizations we deduce quasi-metric versions of well-known fixed point theorems due to Krasnoselskiĭ and Stetsenko; Khan, Swalesh and Sessa; and Dutta and Choudhury, respectively. In fact, our approach shows that many fixed point theorems for $\varphi$-contractions on bicomplete quasi-metric spaces, and hence on complete G-metric spaces, are actually consequences of the corresponding fixed point theorems for complete metric spaces.
DOI : 10.22436/jnsa.009.08.10
Classification : 47H10, 54H25, 54E50
Keywords: Quasi-metric space, bicomplete, \(\varphi\)-contraction, fixed point.

Alegre, Carmen 1 ; Dağ, Hacer 2 ; Romaguera, Salvador 3 ; Tirado, Pedro 1

1 Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, 46022 Valencia, Spain
2 Departamento de Matemática Aplicada, Universitat Politècnica de València, 46022 Valencia, Spain
3 Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, 46022 Valencia, Spain;Departamento de Matemática Aplicada, Universitat Politècnica de València, 46022 Valencia, Spain
@article{JNSA_2016_9_8_a9,
     author = {Alegre, Carmen and Da\u{g}, Hacer and Romaguera, Salvador and Tirado, Pedro},
     title = {On the fixed point theory in bicomplete quasi-metric spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5245-5251},
     publisher = {mathdoc},
     volume = {9},
     number = {8},
     year = {2016},
     doi = {10.22436/jnsa.009.08.10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.10/}
}
TY  - JOUR
AU  - Alegre, Carmen
AU  - Dağ, Hacer
AU  - Romaguera, Salvador
AU  - Tirado, Pedro
TI  - On the fixed point theory in bicomplete quasi-metric spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5245
EP  - 5251
VL  - 9
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.10/
DO  - 10.22436/jnsa.009.08.10
LA  - en
ID  - JNSA_2016_9_8_a9
ER  - 
%0 Journal Article
%A Alegre, Carmen
%A Dağ, Hacer
%A Romaguera, Salvador
%A Tirado, Pedro
%T On the fixed point theory in bicomplete quasi-metric spaces
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5245-5251
%V 9
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.10/
%R 10.22436/jnsa.009.08.10
%G en
%F JNSA_2016_9_8_a9
Alegre, Carmen; Dağ, Hacer; Romaguera, Salvador; Tirado, Pedro. On the fixed point theory in bicomplete quasi-metric spaces. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 8, p. 5245-5251. doi : 10.22436/jnsa.009.08.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.10/

[1] Agarwal, R. P.; Karapınar, E.; Hierro, A. F. Roldán López de Last remarks on G-metric spaces and related fixed point theorems, Rev. R. Acad. Cienc. Exactas Fıs. Nat. Ser. A Math. RACSAM, Volume 110 (2016), pp. 433-456

[2] Alegre, C.; J. Marín Modified w-distances on quasi-metric spaces and a fixed point theorem on complete quasimetric spaces, Topology Appl., Volume 203 (2016), pp. 32-41

[3] Alegre, C.; Marín, J.; S. Romaguera A fixed point theorem for generalized contractions involving w-distances on complete quasi-metric spaces, Fixed Point Theory Appl., Volume 40 (2014), pp. 1-8

[4] Al-Homidan, S.; Ansari, Q. H.; Yao, J.-C. Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory, Nonlinear Anal., Volume 69 (2008), pp. 126-139

[5] Ali-Akbari, M.; Honari, B.; Pourmahdian, M.; Rezaii, M. M. The space of formal balls and models of quasi-metric spaces, Math. Structures Comput. Sci., Volume 19 (2009), pp. 337-355

[6] Boyd, D. W.; Wong, J. S. W. On nonlinear contractions, Proc. Amer. Math. Soc., Volume 20 (1969), pp. 458-464

[7] F. E. Browder On the convergence of successive approximations for nonlinear functional equations , Nederl. Akad. Wetensch. Proc. Ser. A Math., Volume 30 (1968), pp. 27-35

[8] Cobzas, S. Completeness in quasi-metric spaces and Ekeland Variational Principle, Topology Appl., Volume 158 (2011), pp. 1073-1084

[9] Cobzas, S. Functional analysis in asymmetric normed spaces, Frontiers in Mathematics, Birkhäuser/Springer Basel AG, Basel, 2013

[10] Dag, H.; Minak, G.; Altun, I. Some fixed point results for multivalued F-contractions on quasi metric spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, Volume 2016 (2016), pp. 1-11

[11] Dutta, P. N.; B. S. Choudhury A generalisation of contraction principle in metric spaces , Fixed Point Theory Appl., Volume 2008 (2008), pp. 1-8

[12] Jachymski, J. Equivalence of some contractivity properties over metrical structures, Proc. Amer. Math. Soc., Volume 125 (1997), pp. 2327-2335

[13] Jachymski, J. Equivalent conditions for generalized contractions on (ordered) metric spaces, Nonlinear Anal., Volume 74 (2011), pp. 768-774

[14] Jleli, M.; B. Samet Remarks on G-metric spaces and fixed point theorems, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-7

[15] Karapınar, E.; Romaguera, S. On the weak form of Ekeland’s variational principle in quasi-metric spaces, Topology Appl., Volume 184 (2015), pp. 54-60

[16] Khan, M. S.; Swaleh, M.; Sessa, S. Fixed point theorems by altering distances between the points, Bull. Austral. Math. Soc., Volume 30 (1984), pp. 1-9

[17] Krasnoselskiı, M. A.; V. Y. Stetsenko About the theory of equations with concave operators, (Russian) Sib. Mat. Zh., Volume 10 (1969), pp. 565-572

[18] Krasnoselskiı, M. A.; Vaınikko, G. M.; Zabreıko, P. P.; Rutitskiı, Y. B.; Stetsenko, V. Y. Approximate solution of operator equations, Translated from the Russian by D. Louvish, Wolters-Noordhoff Publishing, Groningen, 1972

[19] Künzi, H. P. A. Nonsymmetric distances and their associated topologies: about the origins of basic ideas in the area of asymmetric topology, Handbook of the history of general topology, Hist. Topol., Kluwer Acad. Publ., Dordrecht, Volume 3 (2001), pp. 853-968

[20] Latif, A.; S. A. Al-Mezel Fixed point results in quasimetric spaces, Fixed Point Theory Appl., Volume 2011 (2011), pp. 1-8

[21] Marín, J.; Romaguera, S.; Tirado, P. Generalized contractive set-valued maps on complete preordered quasi-metric spaces, J. Funct. Spaces Appl., Volume 2013 (2013), pp. 1-6

[22] Matkowski, J. Integrable solutions of functional equations , Dissertationes Math. (Rozprawy Mat.), Volume 127 (1975), pp. 1-68

[23] Reilly, I. L.; Subrahmanyam, P. V.; Vamanamurthy, M. K. Cauchy sequences in quasipseudometric spaces, Monatsh. Math., Volume 93 (1982), pp. 127-140

[24] Romaguera, S.; Schellekens, M. Quasi-metric properties of complexity spaces, II Iberoamerican Conference on Topology and its Applications (Morelia, 1997), Topology Appl., Volume 98 (1999), pp. 311-322

[25] Romaguera, S.; Schellekens, M. P.; Valero, O. Complexity spaces as quantitative domains of computation, Topology Appl., Volume 158 (2011), pp. 853-860

[26] Romaguera, S.; Tirado, P. The complexity probabilistic quasi-metric space, J. Math. Anal. Appl., Volume 376 (2011), pp. 732-740

[27] Romaguera, S.; Tirado, P. A characterization of Smyth complete quasi-metric spaces via Caristi’s fixed point theorem, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-13

[28] Romaguera, S.; Valero, O. Domain theoretic characterisations of quasi-metric completeness in terms of formal balls, Math. Structures Comput. Sci., Volume 20 (2010), pp. 453-472

Cité par Sources :