A multi-dimensional functional equation having cubic forms as solutions
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 8, p. 5238-5244.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we obtain some results on the m-variable cubic functional equation
$f(2x_1 + y_1,..., 2x_m + y_m) + f(2x_1 - y_1,..., 2x_m - y_m)\\ = 2f(x_1 + y_1,..., x_m + y_m) + 2f(x_1 - y_1,..., x_m - y_m) + 12f(x_1,..., x_m).$
The cubic form $f(x_1,..., x_m) = \sum_{1\leq i\leq j\leq k\leq m} a_{ijk}x_ix_jx_k$ is a solution of the above functional equation.
DOI : 10.22436/jnsa.009.08.09
Classification : 39B52, 39B82
Keywords: Cubic form, solution, stability.

Park, Won-Gil 1 ; Bae, Jae-Hyeong 2

1 Department of Mathematics Education, College of Education, Mokwon University, Daejeon 35349, Republic of Korea
2 Humanitas College, Kyung Hee University, Yongin 17104, Republic of Korea
@article{JNSA_2016_9_8_a8,
     author = {Park, Won-Gil and Bae, Jae-Hyeong},
     title = {A multi-dimensional functional equation having cubic forms as solutions},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5238-5244},
     publisher = {mathdoc},
     volume = {9},
     number = {8},
     year = {2016},
     doi = {10.22436/jnsa.009.08.09},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.09/}
}
TY  - JOUR
AU  - Park, Won-Gil
AU  - Bae, Jae-Hyeong
TI  - A multi-dimensional functional equation having cubic forms as solutions
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5238
EP  - 5244
VL  - 9
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.09/
DO  - 10.22436/jnsa.009.08.09
LA  - en
ID  - JNSA_2016_9_8_a8
ER  - 
%0 Journal Article
%A Park, Won-Gil
%A Bae, Jae-Hyeong
%T A multi-dimensional functional equation having cubic forms as solutions
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5238-5244
%V 9
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.09/
%R 10.22436/jnsa.009.08.09
%G en
%F JNSA_2016_9_8_a8
Park, Won-Gil; Bae, Jae-Hyeong. A multi-dimensional functional equation having cubic forms as solutions. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 8, p. 5238-5244. doi : 10.22436/jnsa.009.08.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.09/

[1] Bae, J.-H.; Park, W.-G. A functional equation on homogeneous polynomials, J. Korean Soc. Math. Educ. Ser. B, Volume 15 (2008), pp. 103-110

[2] Chang, I.-S.; Jung, Y.-S. Stability of a functional equation deriving from cubic and quadratic functions, J. Math. Anal. Appl., Volume 283 (2003), pp. 491-500

[3] Chu, H.-Y.; Kang, D.-S. On the stability of an n-dimensional cubic functional equation, J. Math. Anal. Appl., Volume 325 (2007), pp. 595-607

[4] Jun, K.-W.; Kim, H.-M. The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl., Volume 274 (2002), pp. 867-878

[5] Jun, K.-W.; Kim, H.-M.; Chang, I.-S. On the Hyers-Ulam stability of an Euler-Lagrange type cubic functional equation, J. Comput. Anal. Appl., Volume 7 (2005), pp. 21-33

Cité par Sources :