Voir la notice de l'article provenant de la source International Scientific Research Publications
$f(2x_1 + y_1,..., 2x_m + y_m) + f(2x_1 - y_1,..., 2x_m - y_m)\\ = 2f(x_1 + y_1,..., x_m + y_m) + 2f(x_1 - y_1,..., x_m - y_m) + 12f(x_1,..., x_m).$ |
Park, Won-Gil 1 ; Bae, Jae-Hyeong 2
@article{JNSA_2016_9_8_a8, author = {Park, Won-Gil and Bae, Jae-Hyeong}, title = {A multi-dimensional functional equation having cubic forms as solutions}, journal = {Journal of nonlinear sciences and its applications}, pages = {5238-5244}, publisher = {mathdoc}, volume = {9}, number = {8}, year = {2016}, doi = {10.22436/jnsa.009.08.09}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.09/} }
TY - JOUR AU - Park, Won-Gil AU - Bae, Jae-Hyeong TI - A multi-dimensional functional equation having cubic forms as solutions JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 5238 EP - 5244 VL - 9 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.09/ DO - 10.22436/jnsa.009.08.09 LA - en ID - JNSA_2016_9_8_a8 ER -
%0 Journal Article %A Park, Won-Gil %A Bae, Jae-Hyeong %T A multi-dimensional functional equation having cubic forms as solutions %J Journal of nonlinear sciences and its applications %D 2016 %P 5238-5244 %V 9 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.09/ %R 10.22436/jnsa.009.08.09 %G en %F JNSA_2016_9_8_a8
Park, Won-Gil; Bae, Jae-Hyeong. A multi-dimensional functional equation having cubic forms as solutions. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 8, p. 5238-5244. doi : 10.22436/jnsa.009.08.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.09/
[1] A functional equation on homogeneous polynomials, J. Korean Soc. Math. Educ. Ser. B, Volume 15 (2008), pp. 103-110
[2] Stability of a functional equation deriving from cubic and quadratic functions, J. Math. Anal. Appl., Volume 283 (2003), pp. 491-500
[3] On the stability of an n-dimensional cubic functional equation, J. Math. Anal. Appl., Volume 325 (2007), pp. 595-607
[4] The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl., Volume 274 (2002), pp. 867-878
[5] On the Hyers-Ulam stability of an Euler-Lagrange type cubic functional equation, J. Comput. Anal. Appl., Volume 7 (2005), pp. 21-33
Cité par Sources :