Calculations on topological degrees of semi-closed 1-set-contractive operators in M-PN-spaces and applications
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 8, p. 5229-5237.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The aim of the paper is to study some calculating problems of topological degrees of semi-closed 1-set- contractive operators in M-PN-spaces. Under some weak and natural conditions, several calculation results are obtained. Finally, in order to verify the validity of our results, a support example is given at the end of the paper.
DOI : 10.22436/jnsa.009.08.08
Classification : 55M25, 47H08, 54E70
Keywords: Topological degree, M-PN-space, semi-closed 1-set-contractive operator, fixed point.

Yin, Jiandong 1 ; Yan, Pinghua 1 ; Leng, Qianqian 1

1 Department of Mathematics, Nanchang University, Nanchang 330031, P. R. China
@article{JNSA_2016_9_8_a7,
     author = {Yin, Jiandong and Yan, Pinghua and Leng, Qianqian},
     title = {Calculations  on topological degrees of semi-closed 1-set-contractive operators in {M-PN-spaces} and applications},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5229-5237},
     publisher = {mathdoc},
     volume = {9},
     number = {8},
     year = {2016},
     doi = {10.22436/jnsa.009.08.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.08/}
}
TY  - JOUR
AU  - Yin, Jiandong
AU  - Yan, Pinghua
AU  - Leng, Qianqian
TI  - Calculations  on topological degrees of semi-closed 1-set-contractive operators in M-PN-spaces and applications
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5229
EP  - 5237
VL  - 9
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.08/
DO  - 10.22436/jnsa.009.08.08
LA  - en
ID  - JNSA_2016_9_8_a7
ER  - 
%0 Journal Article
%A Yin, Jiandong
%A Yan, Pinghua
%A Leng, Qianqian
%T Calculations  on topological degrees of semi-closed 1-set-contractive operators in M-PN-spaces and applications
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5229-5237
%V 9
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.08/
%R 10.22436/jnsa.009.08.08
%G en
%F JNSA_2016_9_8_a7
Yin, Jiandong; Yan, Pinghua; Leng, Qianqian. Calculations  on topological degrees of semi-closed 1-set-contractive operators in M-PN-spaces and applications. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 8, p. 5229-5237. doi : 10.22436/jnsa.009.08.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.08/

[1] Bocşan, G.; Constantin, G. The Kuratowski function and some applications to the probabilistic metric spaces, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., Volume 55 (1973), pp. 236-240

[2] Chang, S. S.; Cho, Y. J.; Kang, S. M. Nonlinear operator theory in probabilistic metric spaces, Nova Science Publishers, Inc., Huntington, NY, 2001

[3] Egbert, J. Products and quotients of probabilistic metric spaces, Pacific J. Math., Volume 24 (1968), pp. 437-455

[4] Huang, X.; M.Wang; Zhu, C. The topological degree of A-proper mapping in the Menger PN-space, I, Bull. Austral. Math. Soc, Volume 73 (2006), pp. 161-168

[5] Li, G. Z.; Xu, S. Y.; Duan, H. G. Fixed point theorems of 1-set-contractive operators in Banach spaces, Appl. Math. Lett., Volume 19 (2006), pp. 403-412

[6] Li, Q.; Zhu, C.; Wang, S. Bifurcation points and asymptotic bifurcation points of nonlinear operators in M-PN spaces, Nonlinear Anal., Volume 71 (2009), pp. 4960-4966

[7] Obukhovskiĭ, V. V. On the topological degree of multivalued mappings in probabilistic normed spaces, (Russian) Nonlinear operators in global analysis, Novoe Global. Anal., Voronezh. Gos. Univ., Voronezh, Volume 164 (1991), pp. 141-146

[8] Schweizer, B.; Sklar, A. Statistical metric spaces, Pacific J. Math., Volume 10 (1960), pp. 313-334

[9] Schweizer, B.; Sklar, A. Probabilistic metric spaces, North-Holland Series in Probability and Applied Mathematics, North-Holland Publishing Co., New York, 1983

[10] Šerstnev, A. N. On the concept of a stochastic normalized space, (Russian) Dokl. Akad. Nauk SSSR, Volume 149 (1963), pp. 280-283

[11] Wu, Z.; Zhu, C. Topological degree for 1-set-contractive fields in M-PN spaces and its applications, Appl. Math. J. Chinese Univ. Ser. B, Volume 25 (2010), pp. 463-474

[12] Xu, S. New fixed point theorems for 1-set-contractive operators in Banach spaces, Nonlinear Anal., Volume 67 (2007), pp. 938-944

[13] Zhu, C. Several nonlinear operator problems in the Menger PN space, Nonlinear Anal., Volume 65 (2009), pp. 1281-1284

Cité par Sources :