On monotone mappings in modular function spaces
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 8, p. 5219-5228.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We prove the existence of fixed points of monotone $\rho$-nonexpansive mappings in $\rho$-uniformly convex modular function spaces. This is the modular version of Browder and Göhde fixed point theorems for monotone mappings. We also discuss the validity of this result in modular function spaces where the modular is uniformly convex in every direction. This property has never been considered in the context of modular spaces.
DOI : 10.22436/jnsa.009.08.07
Classification : 46B20, 45D05, 34A12
Keywords: Fixed point, Krasnoselskii iteration, modular function spaces, monotone mapping, nonexpansive mapping, partially ordered, uniformly convex, uniformly convex in every direction.

Dehaish, Buthinah A. Bin 1 ; Khamsi, Mohamed A. 2

1 Department of Mathematics, Faculty of Sciences, King Abdulaziz University, Jeddah 21593, Saudi Arabia
2 Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX 79968, U. S. A.
@article{JNSA_2016_9_8_a6,
     author = {Dehaish, Buthinah A. Bin and Khamsi, Mohamed A.},
     title = {On monotone mappings in modular function spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5219-5228},
     publisher = {mathdoc},
     volume = {9},
     number = {8},
     year = {2016},
     doi = {10.22436/jnsa.009.08.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.07/}
}
TY  - JOUR
AU  - Dehaish, Buthinah A. Bin
AU  - Khamsi, Mohamed A.
TI  - On monotone mappings in modular function spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5219
EP  - 5228
VL  - 9
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.07/
DO  - 10.22436/jnsa.009.08.07
LA  - en
ID  - JNSA_2016_9_8_a6
ER  - 
%0 Journal Article
%A Dehaish, Buthinah A. Bin
%A Khamsi, Mohamed A.
%T On monotone mappings in modular function spaces
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5219-5228
%V 9
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.07/
%R 10.22436/jnsa.009.08.07
%G en
%F JNSA_2016_9_8_a6
Dehaish, Buthinah A. Bin; Khamsi, Mohamed A. On monotone mappings in modular function spaces. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 8, p. 5219-5228. doi : 10.22436/jnsa.009.08.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.07/

[1] V. A. Akimovič The uniform convexity and uniform smoothness of Orlicz spaces, (Russian) Teor. Funkciĭ Funkcional. Anal. i Priložen., Volume 15 (1972), pp. 114-121

[2] Bachar, M.; M. A. Khamsi Fixed points of monotone mappings and application to integral equations, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-7

[3] S. Banach Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales, Fund. Math., Volume 3 (1922), pp. 133-181

[4] Dehaish, B. A. Bin; Kozlowski, W. M. Fixed point iteration processes for asymptotic pointwise nonexpansive mapping in modular function spaces, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-23

[5] F. E. Browder Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A., Volume 54 (1965), pp. 1041-1044

[6] S. Chen Geometry of Orlicz spaces , With a preface by Julian Musielak, Dissertationes Math. (Rozprawy Mat.), Volume 356 (1996), pp. 1-204

[7] El-Sayed, S. M.; Ran, A. C. M. On an iteration method for solving a class of nonlinear matrix equations, SIAM J. Matrix Anal. Appl., Volume 23 (2002), pp. 632-645

[8] Garkavi, A. L. On the optimal net and best cross-section of a set in a normed space, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., Volume 26 (1962), pp. 87-106

[9] Goebel, K.; Kirk, W. A. Topics in metric fixed point theory , Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1990

[10] Göhde, D. Zum Prinzip der kontraktiven Abbildung, (German) Math. Nachr., Volume 30 (1965), pp. 251-258

[11] Hudzik, H.; Kamińska, A.; M. Masty lo Geometric properties of some Caldern-Lozanovski spaces and Orlicz-Lorentz spaces , Houston J. Math., Volume 22 (1996), pp. 639-663

[12] Ishikawa, S. Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc., Volume 59 (1976), pp. 65-71

[13] Kamińska, A. On uniform convexity of Orlicz spaces , Nederl. Akad. Wetensch. Indag. Math., Volume 44 (1982), pp. 27-36

[14] Khamsi, M. A.; Kirk, W. A. An introduction to metric spaces and fixed point theory , Pure and Applied Mathematics, Wiley-Interscience, New York, 2001

[15] Khamsi, M. A.; W. M. Kozlowski On asymptotic pointwise contractions in modular function spaces, Nonlinear Anal., Volume 73 (2010), pp. 2957-2967

[16] Khamsi, M. A.; Kozlowski, W. M. Fixed point theory in modular function spaces, With a foreword by W. A. Kirk. Birkhäuser/Springer, Cham, 2015

[17] Khamsi, M. A.; Kozlowski, W. M.; Chen, S. T. Some geometrical properties and fixed point theorems in Orlicz spaces, J. Math. Anal. Appl., Volume 155 (1991), pp. 393-412

[18] Khamsi, M. A.; Kozlowski, W. M.; Reich, S. Fixed point theory in modular function spaces, Nonlinear Anal., Volume 14 (1990), pp. 935-953

[19] Kozlowski, W. M. Modular function spaces, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1988

[20] M. A. Krasnoselskiĭ Two remarks on the method of successive approximations, (Russian) Uspehi Mat. Nauk (N.S.), Volume 10 (1955), pp. 123-127

[21] Krasnoselskiĭ, M. A.; Rutickiĭ, J. B. Convex functions and Orlicz spaces, Translated from the first Russian edition by Leo F. Boron, P. Noordhoff Ltd., Groningen, 1961

[22] W. A. J. Luxemburg Banach function spaces, Thesis, Technische Hogeschool te Delft, Volume 1955 (1955), pp. 1-70

[23] Milnes, H. W. Convexity of Orlicz spaces, Pacific J. Math., Volume 7 (1957), pp. 1451-1486

[24] Nieto, J. J.; Rodríguez-López, R. Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, Volume 22 (2005), pp. 223-239

[25] Ran, A. C. M.; Reurings, M. C. B. A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., Volume 132 (2004), pp. 1435-1443

[26] Schu, J. Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc., Volume 43 (1991), pp. 153-159

[27] V. Zizler On some rotundity and smoothness properties of Banach spaces, Dissertationes Math. Rozprawy Mat., Volume 87 (1971), pp. 1-33

Cité par Sources :