A study on a class of q-Euler polynomials under the symmetric group of degree n
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 8, p. 5196-5201.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Motivated by the paper of Kim et al. [T. Kim, D. S. Kim, H. I. Kwon, J. J. Seo, D. V. Dolgy, J. Nonlinear Sci. Appl., 9 (2016), 1077-1082], we study a class of q-Euler polynomials earlier given by Kim et al. in [T. Kim, Y. H. Kim, K. W. Hwang, Proc. Jangjeon Math. Soc., 12 (2009), 77-92]. We derive some new symmetric identities for q-extension of $\lambda$-Euler polynomials, using fermionic p-adic invariant integral over the p-adic number field originally introduced by Kim in [T. Kim, Russ. J. Math. Phys., 16 (2009), 484-491], under symmetric group of degree n denoted by $S_n$.
DOI : 10.22436/jnsa.009.08.05
Classification : 11B68, 05A19, 11S80, 05A30
Keywords: Symmetric identities, q-extension of \(\lambda\)-Euler polynomials, fermionic p-adic invariant integral on \(\mathbb{Z}_p\), invariant under \(S_n\).

Araci, Serkan 1 ; Duran, Ugur 2 ; Acikgoz, Mehmet 2

1 Department of Economics, Faculty of Economics, Administrative and Social Science, Hasan Kalyoncu University, TR-27410 Gaziantep, Turkey
2 Department of Mathematics, Faculty of Arts and Science, University of Gaziantep, TR-27310 Gaziantep, Turkey
@article{JNSA_2016_9_8_a4,
     author = {Araci, Serkan and Duran, Ugur and Acikgoz, Mehmet},
     title = {A study on a class of {q-Euler} polynomials under the symmetric group of degree n},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5196-5201},
     publisher = {mathdoc},
     volume = {9},
     number = {8},
     year = {2016},
     doi = {10.22436/jnsa.009.08.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.05/}
}
TY  - JOUR
AU  - Araci, Serkan
AU  - Duran, Ugur
AU  - Acikgoz, Mehmet
TI  - A study on a class of q-Euler polynomials under the symmetric group of degree n
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5196
EP  - 5201
VL  - 9
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.05/
DO  - 10.22436/jnsa.009.08.05
LA  - en
ID  - JNSA_2016_9_8_a4
ER  - 
%0 Journal Article
%A Araci, Serkan
%A Duran, Ugur
%A Acikgoz, Mehmet
%T A study on a class of q-Euler polynomials under the symmetric group of degree n
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5196-5201
%V 9
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.05/
%R 10.22436/jnsa.009.08.05
%G en
%F JNSA_2016_9_8_a4
Araci, Serkan; Duran, Ugur; Acikgoz, Mehmet. A study on a class of q-Euler polynomials under the symmetric group of degree n. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 8, p. 5196-5201. doi : 10.22436/jnsa.009.08.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.05/

[1] Ağyüz, E.; Acikgoz, M.; Araci, S. A symmetric identity on the q-Genocchi polynomials of higher-order under third dihedral group \(D_3\), Proc. Jangjeon Math. Soc., Volume 18 (2015), pp. 177-187

[2] Duran, U.; Acikgoz, M.; Araci, S. Symmetric identities involving weighted q-Genocchi polynomials under \(S_4\), Proc. Jangjeon Math. Soc., Volume 18 (2015), pp. 455-465

[3] He, Y.; Araci, S. Sums of products of Apostol-Bernoulli and Apostol-Euler polynomials, Adv. Difference Equ., Volume 2014 (2014), pp. 1-13

[4] He, Y.; Araci, S.; Srivastava, H. M.; Acikgoz, M. Some new identities for the Apostol-Bernoulli polynomials and the Apostol-Genocchi polynomials, Appl. Math. Comput., Volume 262 (2015), pp. 31-41

[5] Kim, T. q-Volkenborn integration, Russ. J. Math. Phys.,, Volume 9 (2002), pp. 288-299

[6] Kim, T. Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on \(\mathbb{Z}_p\), Russ. J. Math. Phys., Volume 16 (2009), pp. 484-491

[7] Kim, T. Symmetry of power sum polynomials and multivariate fermionic p-adic invariant integral on \(\mathbb{Z}_p\), Russ. J. Math. Phys., Volume 16 (2009), pp. 93-96

[8] Kim, D. S.; Kim, T. Some identities of symmetry for q-Bernoulli polynomials under symmetric group of degree n, Ars Combin., Volume 126 (2016), pp. 435-441

[9] Kim, T.; Kim, Y. H.; Hwang, K. W. On the q-extensions of the Bernoulli and Euler numbers, related identities and Lerch zeta function, Proc. Jangjeon Math. Soc., Volume 12 (2009), pp. 77-92

[10] Kim, T.; Kim, D. S.; Kwon, H. I.; Seo, J. J.; Dolgy, D. V. Some identities of q-Euler polynomials under the symmetric group of degree n, J. Nonlinear Sci. Appl., Volume 9 (2016), pp. 1077-1082

[11] Lu, D. Q.; Srivastava, H. M. Some series identities involving the generalized Apostol type and related polynomials, Comput. Math. Appl., Volume 62 (2011), pp. 3591-3602

Cité par Sources :