Voir la notice de l'article provenant de la source International Scientific Research Publications
Qiu, Yang-Qing 1 ; Chen, Jin-Zuo 1 ; Ceng, Lu-Chuan 1
@article{JNSA_2016_9_8_a2, author = {Qiu, Yang-Qing and Chen, Jin-Zuo and Ceng, Lu-Chuan}, title = {Strong convergence for a common solution of variational inequalities, fixed point problems and zeros of finite maximal monotone mappings}, journal = {Journal of nonlinear sciences and its applications}, pages = {5175-5188}, publisher = {mathdoc}, volume = {9}, number = {8}, year = {2016}, doi = {10.22436/jnsa.009.08.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.03/} }
TY - JOUR AU - Qiu, Yang-Qing AU - Chen, Jin-Zuo AU - Ceng, Lu-Chuan TI - Strong convergence for a common solution of variational inequalities, fixed point problems and zeros of finite maximal monotone mappings JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 5175 EP - 5188 VL - 9 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.03/ DO - 10.22436/jnsa.009.08.03 LA - en ID - JNSA_2016_9_8_a2 ER -
%0 Journal Article %A Qiu, Yang-Qing %A Chen, Jin-Zuo %A Ceng, Lu-Chuan %T Strong convergence for a common solution of variational inequalities, fixed point problems and zeros of finite maximal monotone mappings %J Journal of nonlinear sciences and its applications %D 2016 %P 5175-5188 %V 9 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.03/ %R 10.22436/jnsa.009.08.03 %G en %F JNSA_2016_9_8_a2
Qiu, Yang-Qing; Chen, Jin-Zuo; Ceng, Lu-Chuan. Strong convergence for a common solution of variational inequalities, fixed point problems and zeros of finite maximal monotone mappings. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 8, p. 5175-5188. doi : 10.22436/jnsa.009.08.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.03/
[1] A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces, Math. Oper. Res., Volume 26 (2001), pp. 248-264
[2] Hybrid viscosity CQ method for finding a common solution of a variational inequality, a general system of variational inequalities, and a fixed point problem, Fixed Point Theory and Appl., Volume 2013 (2013), pp. 1-25
[3] Hybrid methods with regularization for minimization problems and asymptotically strict pseudocontractive mappings in the intermediate sense, J. Global Optim., Volume 60 (2014), pp. 617-634
[4] Multistep hybrid iterations for systems of generalized equilibria with constraints of several problems, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-27
[5] Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1990
[6] Strong convergence theorem by a hybrid method for nonlinear mappings of nonexpansive and monotone type and applications, Adv. Nonlinear Var. Inequal., Volume 9 (2006), pp. 1-10
[7] The extragradient method for finding saddle points and other problems,, Matecon, Volume 12 (1976), pp. 747-756
[8] A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., Volume 31 (2006), pp. 43-52
[9] Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings, SIAM J. Optim., Volume 16 (2006), pp. 1230-1241
[10] Strong convergence theorems of modified Mann iterative process for strict pseudo- contractions in Hilbert spaces, Nonlinear Anal., Volume 70 (2009), pp. 1257-1264
[11] Hybrid iterative algorithms for two families of finite maximal monotone mappings, Fixed Point Theory and Appl., Volume 2015 (2015), pp. 1-18
[12] Theorie und anwendungen der absolut additiven mengenfunktionen, Wien. Ber., Volume 122 (1913), pp. 1295-1438
[13] On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc., Volume 149 (1970), pp. 75-88
[14] Monotone operators and the proximal point algorithm, SIAM J. Control Optimization, Volume 14 (1976), pp. 877-898
[15] Asymptotically strict pseudocontractive mappings in the intermediate sense, Nonlinear Anal., Volume 70 (2009), pp. 3502-3511
[16] Strong and weak convergence theorems for common zeros of finite accretive mappings, Fixed Point Theory and Appl., Volume 2014 (2014), pp. 1-17
[17] A modified Korpelevich's method convergent to the minimum-norm solution of a variational inequality, Optimization, Volume 63 (2014), pp. 559-569
[18] Construction of minimum-norm fixed points of pseudocontractions in Hilbert spaces, J. Inequal. Appl., Volume 2014 (2014), pp. 1-14
[19] Strong convergence of approximated iterations for asymptotically pseudocontractive mappings, Fixed Point Theory and Appl., Volume 2014 (2014), pp. 1-13
[20] Nonlinear functional analysis and its applications, II/B: Nonlinear monotone Operators, Springer-Verlag, Berlin, 1990
Cité par Sources :