Strong convergence for a common solution of variational inequalities, fixed point problems and zeros of finite maximal monotone mappings
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 8, p. 5175-5188.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, by the strongly positive linear bounded operator technique, a new generalized Mann-type hybrid composite extragradient CQ iterative algorithm is first constructed. Then by using the algorithm, we find a common element of the set of solutions of the variational inequality problem for a monotone, Lipschitz continuous mapping, the set of zeros of two families of finite maximal monotone mappings and the set of fixed points of an asymptotically $\kappa$-strict pseudocontractive mappings in the intermediate sense in a real Hilbert space. Finally, we prove the strong convergence of the iterative sequences, which extends and improves the corresponding previous works.
DOI : 10.22436/jnsa.009.08.03
Classification : 47J25, 47H05, 49J40, 49J53
Keywords: Hybrid method, extragradient method, proximal method, zeros, strong convergence.

Qiu, Yang-Qing 1 ; Chen, Jin-Zuo 1 ; Ceng, Lu-Chuan 1

1 Department of Mathematics, Shanghai Normal University, Shanghai, 200234, China
@article{JNSA_2016_9_8_a2,
     author = {Qiu, Yang-Qing and Chen, Jin-Zuo and Ceng, Lu-Chuan},
     title = {Strong convergence for a common solution of  variational inequalities, fixed point problems and zeros of  finite maximal monotone mappings},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5175-5188},
     publisher = {mathdoc},
     volume = {9},
     number = {8},
     year = {2016},
     doi = {10.22436/jnsa.009.08.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.03/}
}
TY  - JOUR
AU  - Qiu, Yang-Qing
AU  - Chen, Jin-Zuo
AU  - Ceng, Lu-Chuan
TI  - Strong convergence for a common solution of  variational inequalities, fixed point problems and zeros of  finite maximal monotone mappings
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5175
EP  - 5188
VL  - 9
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.03/
DO  - 10.22436/jnsa.009.08.03
LA  - en
ID  - JNSA_2016_9_8_a2
ER  - 
%0 Journal Article
%A Qiu, Yang-Qing
%A Chen, Jin-Zuo
%A Ceng, Lu-Chuan
%T Strong convergence for a common solution of  variational inequalities, fixed point problems and zeros of  finite maximal monotone mappings
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5175-5188
%V 9
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.03/
%R 10.22436/jnsa.009.08.03
%G en
%F JNSA_2016_9_8_a2
Qiu, Yang-Qing; Chen, Jin-Zuo; Ceng, Lu-Chuan. Strong convergence for a common solution of  variational inequalities, fixed point problems and zeros of  finite maximal monotone mappings. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 8, p. 5175-5188. doi : 10.22436/jnsa.009.08.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.03/

[1] Bauschke, H. H.; Combettes, P. L. A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces, Math. Oper. Res., Volume 26 (2001), pp. 248-264

[2] Ceng, L. C.; Guu, S. M.; Yao, J. C. Hybrid viscosity CQ method for finding a common solution of a variational inequality, a general system of variational inequalities, and a fixed point problem, Fixed Point Theory and Appl., Volume 2013 (2013), pp. 1-25

[3] Ceng, L. C.; Guu, S. M.; Yao, J. C. Hybrid methods with regularization for minimization problems and asymptotically strict pseudocontractive mappings in the intermediate sense, J. Global Optim., Volume 60 (2014), pp. 617-634

[4] Ceng, L. C.; Liao, C. W.; Pang, C. T.; Wen, C. F. Multistep hybrid iterations for systems of generalized equilibria with constraints of several problems, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-27

[5] Goebel, K.; Kirk, W. A. Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1990

[6] Iiduka, H.; Takahashi, W. Strong convergence theorem by a hybrid method for nonlinear mappings of nonexpansive and monotone type and applications, Adv. Nonlinear Var. Inequal., Volume 9 (2006), pp. 1-10

[7] Korpelevich, G. M. The extragradient method for finding saddle points and other problems,, Matecon, Volume 12 (1976), pp. 747-756

[8] Marino, G.; Xu, H. K. A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., Volume 31 (2006), pp. 43-52

[9] Nadezhkina, N.; Takahashi, W. Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings, SIAM J. Optim., Volume 16 (2006), pp. 1230-1241

[10] Qin, X.; Shang, M.; Kang, S. M. Strong convergence theorems of modified Mann iterative process for strict pseudo- contractions in Hilbert spaces, Nonlinear Anal., Volume 70 (2009), pp. 1257-1264

[11] Qiu, Y. Q.; Ceng, L. C.; Chen, J. Z.; Hu, H. Y. Hybrid iterative algorithms for two families of finite maximal monotone mappings, Fixed Point Theory and Appl., Volume 2015 (2015), pp. 1-18

[12] Radon, J. Theorie und anwendungen der absolut additiven mengenfunktionen, Wien. Ber., Volume 122 (1913), pp. 1295-1438

[13] Rockafellar, R. T. On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc., Volume 149 (1970), pp. 75-88

[14] Rockafellar, R. T. Monotone operators and the proximal point algorithm, SIAM J. Control Optimization, Volume 14 (1976), pp. 877-898

[15] Sahu, D. R.; Xu, H. K.; Yao, J. C. Asymptotically strict pseudocontractive mappings in the intermediate sense, Nonlinear Anal., Volume 70 (2009), pp. 3502-3511

[16] Wei, L.; Tan, R. Strong and weak convergence theorems for common zeros of finite accretive mappings, Fixed Point Theory and Appl., Volume 2014 (2014), pp. 1-17

[17] Yao, Y.; Marino, G.; Muglia, L. A modified Korpelevich's method convergent to the minimum-norm solution of a variational inequality, Optimization, Volume 63 (2014), pp. 559-569

[18] Yao, Y.; Marino, G.; Xu, H. K.; Liou, Y. C. Construction of minimum-norm fixed points of pseudocontractions in Hilbert spaces, J. Inequal. Appl., Volume 2014 (2014), pp. 1-14

[19] Yao, Y.; Postolache, M.; Kang, S. M. Strong convergence of approximated iterations for asymptotically pseudocontractive mappings, Fixed Point Theory and Appl., Volume 2014 (2014), pp. 1-13

[20] Zeidler, E. Nonlinear functional analysis and its applications, II/B: Nonlinear monotone Operators, Springer-Verlag, Berlin, 1990

Cité par Sources :