Voir la notice de l'article provenant de la source International Scientific Research Publications
Liu, Hong-Yan 1 ; He, Ji-Huan 2 ; Li, Zhi-Min 3
@article{JNSA_2016_9_8_a1, author = {Liu, Hong-Yan and He, Ji-Huan and Li, Zhi-Min}, title = {Variational principle for a three-point boundary value problem}, journal = {Journal of nonlinear sciences and its applications}, pages = {5169-5174}, publisher = {mathdoc}, volume = {9}, number = {8}, year = {2016}, doi = {10.22436/jnsa.009.08.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.02/} }
TY - JOUR AU - Liu, Hong-Yan AU - He, Ji-Huan AU - Li, Zhi-Min TI - Variational principle for a three-point boundary value problem JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 5169 EP - 5174 VL - 9 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.02/ DO - 10.22436/jnsa.009.08.02 LA - en ID - JNSA_2016_9_8_a1 ER -
%0 Journal Article %A Liu, Hong-Yan %A He, Ji-Huan %A Li, Zhi-Min %T Variational principle for a three-point boundary value problem %J Journal of nonlinear sciences and its applications %D 2016 %P 5169-5174 %V 9 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.02/ %R 10.22436/jnsa.009.08.02 %G en %F JNSA_2016_9_8_a1
Liu, Hong-Yan; He, Ji-Huan; Li, Zhi-Min. Variational principle for a three-point boundary value problem. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 8, p. 5169-5174. doi : 10.22436/jnsa.009.08.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.02/
[1] Existence of concave symmetric positive solutions for a three-point boundary value problem, Adv. Difference Equ., Volume 2014 (2014), pp. 1-12
[2] Solving singular second order three-point boundary value problems using reproducing kernel Hilbert space method, Appl. Math. Comput., Volume 215 (2009), pp. 2095-2102
[3] Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos Solitons Fractals, Volume 19 (2004), pp. 847-851
[4] Variational approach to impulsive differential equations using the semi-inverse method, Zeitschrift für Naturforschung A, Volume 66 (2011), pp. 632-634
[5] Asymptotic methods for solitary solutions and compactons, Abstr. Appl. Anal., Volume 2012 (2012), pp. 1-130
[6] On fractal space-time and fractional calculus, Thermal Sci., Volume 20 (2016), pp. 773-777
[7] Variational principle for unsteady heat conduction equation, Thermal Sci., Volume 18 (2014), pp. 1045-1047
[8] On the semi-inverse method and variational principle, Thermal Sci., Volume 17 (2013), pp. 1565-1568
[9] First-order three-point boundary value problems at resonance, J. Comput. Appl. Math., Volume 235 (2011), pp. 4796-4801
[10] Existence of triple positive solutions for a third-order three-point boundary value problem, J. Comput. Appl. Math., Volume 221 (2008), pp. 194-201
[11] Approximate solution of three-point boundary value problems for second-order ordinary differential equations with variable coefficients, Appl. Math. Comput., Volume 247 (2014), pp. 18-29
Cité par Sources :