A general implicit iteration for finding fixed points of nonexpansive mappings
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 8, p. 5157-5168.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The aim of the paper is to construct an iterative method for finding the fixed points of nonexpansive mappings. We introduce a general implicit iterative scheme for finding an element of the set of fixed points of a nonexpansive mapping defined on a nonempty closed convex subset of a real Hilbert space. The strong convergence theorem for the proposed iterative scheme is proved under certain assumptions imposed on the sequence of parameters. Our results extend and improve the results given by Ke and Ma [Y. Ke, C. Ma, Fixed Point Theory Appl., 2015 (2015), 21 pages], Xu et al. [H. K. Xu, M. A. Alghamdi, N. Shahzad, Fixed Point Theory Appl., 2015 (2015), 12 pages], and many others.
DOI : 10.22436/jnsa.009.08.01
Classification : 47J25, 47H09
Keywords: Metric projection mapping, nonexpansive mapping, variational inequality, viscosity method, implicit rules.

Sahu, D. R. 1 ; Kang, Shin Min 2 ; Kumar, Ajeet 1 ; Cho, Sun Young 3

1 Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
2 Center for General Education, China Medical University, Taichung 40402, Taiwan;Department of Mathematics and the RINS, Gyeongsang National University, Jinju 52828, Korea
3 Department of Mathematics, Gyeongsang National University, Jinju 52828, Korea
@article{JNSA_2016_9_8_a0,
     author = {Sahu, D. R. and Kang, Shin Min and Kumar, Ajeet and Cho, Sun Young},
     title = {A general implicit iteration for finding fixed points of nonexpansive mappings},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5157-5168},
     publisher = {mathdoc},
     volume = {9},
     number = {8},
     year = {2016},
     doi = {10.22436/jnsa.009.08.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.01/}
}
TY  - JOUR
AU  - Sahu, D. R.
AU  - Kang, Shin Min
AU  - Kumar, Ajeet
AU  - Cho, Sun Young
TI  - A general implicit iteration for finding fixed points of nonexpansive mappings
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5157
EP  - 5168
VL  - 9
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.01/
DO  - 10.22436/jnsa.009.08.01
LA  - en
ID  - JNSA_2016_9_8_a0
ER  - 
%0 Journal Article
%A Sahu, D. R.
%A Kang, Shin Min
%A Kumar, Ajeet
%A Cho, Sun Young
%T A general implicit iteration for finding fixed points of nonexpansive mappings
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5157-5168
%V 9
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.01/
%R 10.22436/jnsa.009.08.01
%G en
%F JNSA_2016_9_8_a0
Sahu, D. R.; Kang, Shin Min; Kumar, Ajeet; Cho, Sun Young. A general implicit iteration for finding fixed points of nonexpansive mappings. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 8, p. 5157-5168. doi : 10.22436/jnsa.009.08.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.08.01/

[1] Agarwal, R. P.; O'Regan, D.; Sahu, D. R. Fixed point theory for Lipschitzian-type mappings with applications, Topological Fixed Point Theory and Its Applications, Springer, New York, 2009

[2] Alghamdi, M. A.; Alghamdi, M. A.; Shahzad, N.; Xu, H. K. The implicit midpoint rule for nonexpansive mappings, Fixed Point Theory and Appl., Volume 2014 (2014), pp. 1-9

[3] Bader, G.; hard, P. Deu A semi-implicit mid-point rule for stiff systems of ordinary differential equations, Numer. Math., Volume 41 (1983), pp. 373-398

[4] Ceng, L. C.; Ansari, Q. H.; Yao, J. C. Some iterative methods for finding fixed points and for solving constrained convex minimization problems, Nonlinear Anal., Volume 74 (2011), pp. 5286-5302

[5] hard, P. Deu Recent progress in extrapolation methods for ordinary differential equations, SIAM Rev., Volume 27 (1985), pp. 505-535

[6] Goebel, K.; Kirk, W. A. Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1990

[7] Ke, Y.; Ma, C. The generalized viscosity implicit rules of nonexpansive mappings in Hilbert spaces, Fixed Point Theory and Appl., Volume 2015 (2015), pp. 1-21

[8] Latif, A.; Sahu, D. R.; Ansari, Q. H. Variable KM-like algorithms for fixed point problems and split feasibility problems, Fixed Point Theory and Appl., Volume 2014 (2014), pp. 1-20

[9] Moudafi, A. Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., Volume 241 (2000), pp. 46-55

[10] Somalia, S. Implicit midpoint rule to the nonlinear degenerate boundary value problems, Int. J. Comput. Math., Volume 79 (2002), pp. 327-332

[11] Xu, H. K. Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl., Volume 298 (2004), pp. 279-291

[12] Xu, H. K.; Alghamdi, M. A.; Shahzad, N. The viscosity technique for the implicit midpoint rule of nonexpansive mappings in Hilbert spaces, Fixed Point Theory and Appl., Volume 2015 (2015), pp. 1-12

[13] Yamada, I. The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings, Inherently parallel algorithms in feasibility and optimization and their applications, Haifa, (2000), Stud. Comput. Math., North-Holland, Amsterdam, Volume 2001 (2001), pp. 473-504

[14] Yao, Y.; Agarwal, R. P.; Postolache, M.; Liou, Y. C. Algorithms with strong convergence for the split common solution of the feasibility problem and fixed point problem, Fixed Point Theory and Appl., Volume 2014 (2014), pp. 1-14

[15] Yao, Y.; Liou, Y. C.; Lee, T. L.; Wong, N. C. An iterative algorithm based on the implicit midpoint rule for nonexpansive mappings, J. Nonlinear Convex Anal., Volume 17 (2016), pp. 655-668

[16] Yao, Y.; Liou, Y. C.; Yao, J. C. Split common fixed point problem for two quasi-pseudo-contractive operators and its algorithm construction, Fixed Point Theory and Appl., Volume 2015 (2015), pp. 1-19

[17] Yao, Y.; Postolache, M.; Liou, Y. C. Strong convergence of a self-adaptive method for the split feasibility problem, Fixed Point Theory and Appl., Volume 2013 (2013), pp. 1-12

[18] Yao, Y.; Shahzad, N.; Liou, Y. C. Modified semi-implicit midpoint rule for nonexpansive mappings, Fixed Point Theory and Appl., Volume 2015 (2015), pp. 1-15

Cité par Sources :