Positive solutions for some Riemann-Liouville fractional boundary value problems
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 7, p. 5093-5106.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We study the existence and global asymptotic behavior of positive continuous solutions to the following nonlinear fractional boundary value problem
$ (p_\lambda) \begin{cases} D^\alpha u(t)=\lambda f(t,u(t)),\,\,\,\,\, t\in (0,1),\\ \lim_{t\rightarrow 0^+}t^{2-\alpha} u(t)=\mu, \quad u(1)=\nu, \end{cases} $
where $1 \alpha\leq 2; D^\alpha$ is the Riemann-Liouville fractional derivative, and $\lambda,\mu$ and $\nu$ are nonnegative constants such that $\mu + \nu > 0$. Our purpose is to give two existence results for the above problem, where $f(t; s)$ is a nonnegative continuous function on $(0; 1)\times[0;\infty)$; nondecreasing with respect to the second variable and satisfying some appropriate integrability condition. Some examples are given to illustrate our existence results.
DOI : 10.22436/jnsa.009.07.12
Classification : 34B27, 34A08, 34B18, 34B15, 47N20
Keywords: Fractional differential equation, positive solutions, Green's function, perturbation arguments, Schäuder fixed point theorem.

Bachar, Imed 1 ; Mâagli, Habib 2

1 Mathematics Department, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
2 Department of Mathematics, College of Sciences and Arts, Rabigh Campus, King Abdulaziz University, P. O. Box 344, Rabigh 21911, Saudi Arabia;Department of Mathematics, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia
@article{JNSA_2016_9_7_a11,
     author = {Bachar, Imed and M\^aagli, Habib},
     title = {Positive solutions for some {Riemann-Liouville} fractional boundary value problems},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5093-5106},
     publisher = {mathdoc},
     volume = {9},
     number = {7},
     year = {2016},
     doi = {10.22436/jnsa.009.07.12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.12/}
}
TY  - JOUR
AU  - Bachar, Imed
AU  - Mâagli, Habib
TI  - Positive solutions for some Riemann-Liouville fractional boundary value problems
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5093
EP  - 5106
VL  - 9
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.12/
DO  - 10.22436/jnsa.009.07.12
LA  - en
ID  - JNSA_2016_9_7_a11
ER  - 
%0 Journal Article
%A Bachar, Imed
%A Mâagli, Habib
%T Positive solutions for some Riemann-Liouville fractional boundary value problems
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5093-5106
%V 9
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.12/
%R 10.22436/jnsa.009.07.12
%G en
%F JNSA_2016_9_7_a11
Bachar, Imed; Mâagli, Habib. Positive solutions for some Riemann-Liouville fractional boundary value problems. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 7, p. 5093-5106. doi : 10.22436/jnsa.009.07.12. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.12/

[1] Agarwal, R. P.; O'Regan, D.; Staněk, S. Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations, J. Math. Anal. Appl., Volume 371 (2010), pp. 57-68

[2] Bachar, I.; Mâagli, H. Positive solutions for superlinear fractional boundary value problemss, Adv. Difference Equ., Volume 2014 (2014), pp. 1-16

[3] Bachar, I.; Mâagli, H.; Radulescu, V. D. Fractional Navier boundary value problems, Bound. Value Probl., Volume 2016 (2016), pp. 1-14

[4] Bachar, I.; Mâagli, H.; Toumi, F.; Abidine, Z. Zine El Existence and global asymptotic behavior of positive solutions for sublinear and superlinear fractional boundary value problems, Chin. Ann. Math. Ser. B, Volume 37 (2016), pp. 1-28

[5] Bai, Z.; H. Lü Positive solutions for boundary value problem of nonlinear fractional differential equation , J. Math. Anal. Appl., Volume 311 (2005), pp. 495-505

[6] Pezzo, L. Del; Rossi, J.; Saintier, N.; Salort, A. An optimal mass transport approach for limits of eigenvalue problems for the fractional p-Laplacian, Adv. Nonlinear Anal., Volume 4 (2015), pp. 235-249

[7] Diethelm, K.; A. D. Freed On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity, Sci. Comput. Chem. Eng. II, Springer, Heidelberg, 1999

[8] Gaul, L.; Klein, P.; S. Kempe Damping description involving fractional operators, Mech. Syst. Signal Process, Volume 5 (1991), pp. 81-88

[9] Giacomoni, J.; Mishra, P. K.; Sreenadh, K. Fractional elliptic equations with critical exponential nonlinearity, Adv. Nonlinear Anal., Volume 5 (2016), pp. 57-74

[10] Glöckle, W. G.; Nonnenmacher, T. F. A fractional calculus approach to self-similar protein dynamics, Biophys. J., Volume 68 (1995), pp. 46-53

[11] Goyal, S.; Sreenadh, K. Existence of multiple solutions of p-fractional Laplace operator with sign-changing weight function, Adv. Nonlinear Anal., Volume 4 (2015), pp. 37-58

[12] Graef, J. R.; Kong, L.; Kong, Q.; Wang, M. Existence and uniqueness of solutions for a fractional boundary value problem with Dirichlet boundary condition, Electron. J. Qual. Theory Differ. Equ., Volume 2013 (2013), pp. 1-11

[13] Hilfer, R. Applications of fractional calculus in physics, World Scientific Publishing Co., Inc., River Edge, 2000

[14] Jleli, M.; Samet, B. Existence of positive solutions to a coupled system of fractional differential equations, Math. Methods Appl. Sci., Volume 38 (2015), pp. 1014-1031

[15] Kaufmann, E. R.; E. Mboumi Positive solutions of a boundary value problem for a nonlinear fractional differential equation, Electron. J. Qual. Theory Differ. Equ., Volume 2008 (2008), pp. 1-11

[16] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J. Theory and applications of fractional differential equations, North- Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006

[17] Liang, S.; Zhang, J. Positive solutions for boundary value problems of nonlinear fractional differential equation, Nonlinear Anal., Volume 71 (2009), pp. 5545-5550

[18] Mâagli, H.; Mhadhebi, N.; N. Zeddini Existence and estimates of positive solutions for some singular fractional boundary value problems, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-7

[19] F. Mainardi Fractional calculus: some basic problems in continuum and statical mechanics, Fractals and Fractional Calculus in Continuum Mechanics, Springer Verlag, Vienna and New York, Volume 1997 (1997), pp. 291-348

[20] Metzler, R.; J. Klafter Boundary value problems for fractional diffusion equations, Phys. A, Volume 278 (2000), pp. 107-125

[21] Miller, K. S.; Ross, B. An introduction to the fractional calculus and fractional differential equations, A Wiley- Inter-science Publication, John Wiley & Sons, Inc., New York, 1993

[22] Bisci, G. Molica; Radulescu, V. D.; Servadei, R. Variational methods for nonlocal fractional problems, With a foreword by Jean Mawhin, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2016

[23] Bisci, G. Molica; Repovs, D. Existence and localization of solutions for nonlocal fractional equations, Asymptot. Anal., Volume 90 (2014), pp. 367-378

[24] Bisci, G. Molica; Repovs, D. Higher nonlocal problems with bounded potential, J. Math. Anal. Appl., Volume 420 (2014), pp. 167-176

[25] I. Podlubny Fractional differential equations, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, Academic Press, Inc. , San Diego, 1999

[26] Samko, S.; Kilbas, A. A.; Marichev, O. I. Fractional integrals and derivatives, Theory and applications, Edited and with a foreword by S. M. Nikolʹskiĭ, Translated from the 1987 Russian original, Revised by the authors, Gordon and Breach Science Publishers, Yverdon, 1993

[27] Scher, H.; Montroll, E. Anomalous transit-time dispersion in amorphous solids, Phys. Rev. B., Volume 12 (1975), pp. 2455-2477

[28] V. E. Tarasov Fractional dynamics, Applications of fractional calculus to dynamics of particles, fields and media, Nonlinear Physical Science, Springer, Heidelberg, Higher Education Press, Beijing, 2011

[29] Timoshenko, S. P.; Gere, J. M. Theory of elastic stability, McGraw-Hill, New York, 1961

[30] Zhang, X.; Liu, L.; Wu, Y. Multiple positive solutions of a singular fractional differential equation with negatively perturbed term, Math. Comput. Modelling, Volume 55 (2012), pp. 1263-1274

Cité par Sources :