Essential norm of weighted composition operators from $H^\infty$ to the Zygmund space
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 7, p. 5082-5092.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Let $\varphi$ be an analytic self-map of the unit disk $\mathbb{D}$ and $u \in H(\mathbb{D})$, the space of analytic functions on $\mathbb{D}$. The weighted composition operator, denoted by $uC_\varphi$, is defined by $(uC_\varphi f)(z) = u(z)f(\varphi(z)); f \in H(\mathbb{D}); z \in \mathbb{D}.$ In this paper, we give three different estimates for the essential norm of the operator $uC_\varphi$ from $H^\infty$ into the Zygmund space, denoted by $\mathcal{Z}$. In particular, we show that$\|uC_\varphi\|_{e,H^\infty\rightarrow \mathcal{Z}} \approx \limsup_{n\rightarrow\infty}\|u\varphi^n\|_\mathcal{Z}$.
DOI : 10.22436/jnsa.009.07.11
Classification : 47B38, 30H30
Keywords: Zygmund space, essential norm, weighted composition operator.

Hu, Qinghua 1 ; Zhu, Xiangling 2

1 Department of Mathematics, Shantou University, Shantou, Guangdong, China
2 Department of Mathematics, Jiaying University, 514015, Meizhou, Guangdong, China
@article{JNSA_2016_9_7_a10,
     author = {Hu, Qinghua and Zhu, Xiangling},
     title = {Essential norm of weighted composition operators from {\(H^\infty\)} to the {Zygmund} space},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5082-5092},
     publisher = {mathdoc},
     volume = {9},
     number = {7},
     year = {2016},
     doi = {10.22436/jnsa.009.07.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.11/}
}
TY  - JOUR
AU  - Hu, Qinghua
AU  - Zhu, Xiangling
TI  - Essential norm of weighted composition operators from \(H^\infty\) to the Zygmund space
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5082
EP  - 5092
VL  - 9
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.11/
DO  - 10.22436/jnsa.009.07.11
LA  - en
ID  - JNSA_2016_9_7_a10
ER  - 
%0 Journal Article
%A Hu, Qinghua
%A Zhu, Xiangling
%T Essential norm of weighted composition operators from \(H^\infty\) to the Zygmund space
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5082-5092
%V 9
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.11/
%R 10.22436/jnsa.009.07.11
%G en
%F JNSA_2016_9_7_a10
Hu, Qinghua; Zhu, Xiangling. Essential norm of weighted composition operators from \(H^\infty\) to the Zygmund space. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 7, p. 5082-5092. doi : 10.22436/jnsa.009.07.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.11/

[1] Choe, B. R.; Koo, H.; Smith, W. Composition operators on small spaces, Integral Equations Operator Theory, Volume 56 (2006), pp. 357-380

[2] Colonna, F.; S. Li Weighted composition operators from \(H^\infty\) into the Zygmund spaces, Complex Anal. Oper. Theory, Volume 7 (2013), pp. 1495-1512

[3] Duren, P. L. Theory of \(H^p\) spaces, Pure and Applied Mathematics, Academic Press, New York-London, 1970

[4] Esmaeili, K.; Lindström, M. Weighted composition operators between Zygmund type spaces and their essential norms, Integral Equations Operator Theory, Volume 75 (2013), pp. 473-490

[5] Hyvärinen, O.; Lindström, M. Estimates of essential norms of weighted composition operators between Bloch-type spaces, J. Math. Anal. Appl., Volume 393 (2012), pp. 38-44

[6] Li, S.; Stević, S. Volterra-type operators on Zygmund spaces, J. Inequal. Appl., Volume 2007 (2007), pp. 1-10

[7] Li, S.; Stević, S. Generalized composition operators on Zygmund spaces and Bloch type spaces, J. Math. Anal. Appl., Volume 338 (2008), pp. 1282-1295

[8] Li, S.; Stević, S. Weighted composition operators from Zygmund spaces into Bloch spaces, Appl. Math. Comput., Volume 206 (2008), pp. 825-831

[9] Li, S.; Stević, S. Products of composition and differentiation operators from Zygmund spaces to Bloch spaces and Bers spaces, Appl. Math. Comput., Volume 217 (2010), pp. 3144-3154

[10] MacCluer, B. D.; Zhao, R. Essential norms of weighted composition operators between Bloch-type spaces, Rocky Mountain J. Math., Volume 33 (2003), pp. 1437-1458

[11] Madigan, K.; Matheson, A. Compact composition operators on the Bloch space, Trans. Amer. Math. Soc., Volume 347 (1995), pp. 2679-2687

[12] Montes-Rodríguez, A. The essential norm of a composition operator on Bloch spaces, Pacific J. Math., Volume 188 (1999), pp. 339-351

[13] Ohno, S.; Stroethoff, K.; Zhao, R. Weighted composition operators between Bloch-type spaces, Rocky Mountain J. Math., Volume 33 (2003), pp. 191-215

[14] S. Stević Weighted differentiation composition operators from \(H^\infty\) and Bloch spaces to nth weighted-type spaces on the unit disk, Appl. Math. Comput., Volume 216 (2010), pp. 3634-3641

[15] Stević, S. Weighted differentiation composition operators from the mixed-norm space to the nth weighted-type space on the unit disk, Abstr. Appl. Anal., Volume 2010 (2010), pp. 1-15

[16] M. Tjani Compact composition operators on some Moebius invariant Banach spaces, Thesis (Ph.D.)-Michigan State University, ProQuest LLC, Ann Arbor, 1996

[17] Wulan, H.; Zheng, D.; Zhu, K. Compact composition operators on BMOA and the Bloch space, Proc. Amer. Math. Soc., Volume 137 (2009), pp. 3861-3868

[18] Ye, S.; Q. Hu Weighted composition operators on the Zygmund space, Abstr. Appl. Anal., Volume 2012 (2012), pp. 1-18

[19] Yu, Y.; Liu, Y. Weighted differentiation composition operators from \(H^\infty\) to Zygmund spaces, Integral Transforms Spec. Funct., Volume 22 (2011), pp. 507-520

[20] Zhao, R. Essential norms of composition operators between Bloch type spaces, Proc. Amer. Math. Soc., Volume 138 (2010), pp. 2537-2546

[21] Zhu, K. H. Operator theory in function spaces, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1990

Cité par Sources :