Numerical solution of fractional bioheat equation by quadratic spline collocation method
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 7, p. 5061-5072.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Based on the quadratic spline function, a quadratic spline collocation method is presented for the time fractional bioheat equation governing the process of heat transfer in tissues during the thermal therapy. The corresponding linear system is given. The stability and convergence are analyzed. Some numerical examples are given to demonstrate the efficiency of this method.
DOI : 10.22436/jnsa.009.07.09
Classification : 65M70, 35K05, 92C50, 35R11, 35Q92
Keywords: Quadratic spline collocation method, fractional bioheat equation, hyperthermia.

Qin, Yanmei 1 ; Wu, Kaiteng 1

1 Key Laboratory of Numerical Simulation of Sichuan Province/College of Mathematics and Information Science, Neijiang Normal University, Neijiang, 641112, P. R. China
@article{JNSA_2016_9_7_a8,
     author = {Qin, Yanmei and Wu, Kaiteng},
     title = {Numerical solution of fractional bioheat equation by quadratic spline collocation method},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5061-5072},
     publisher = {mathdoc},
     volume = {9},
     number = {7},
     year = {2016},
     doi = {10.22436/jnsa.009.07.09},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.09/}
}
TY  - JOUR
AU  - Qin, Yanmei
AU  - Wu, Kaiteng
TI  - Numerical solution of fractional bioheat equation by quadratic spline collocation method
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5061
EP  - 5072
VL  - 9
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.09/
DO  - 10.22436/jnsa.009.07.09
LA  - en
ID  - JNSA_2016_9_7_a8
ER  - 
%0 Journal Article
%A Qin, Yanmei
%A Wu, Kaiteng
%T Numerical solution of fractional bioheat equation by quadratic spline collocation method
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5061-5072
%V 9
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.09/
%R 10.22436/jnsa.009.07.09
%G en
%F JNSA_2016_9_7_a8
Qin, Yanmei; Wu, Kaiteng. Numerical solution of fractional bioheat equation by quadratic spline collocation method. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 7, p. 5061-5072. doi : 10.22436/jnsa.009.07.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.09/

[1] Baleanu, D.; Asad, J. H.; Petras, I. Numerical solution of the fractional Euler-Lagrange's equations of a thin elastica model, Nonlinear Dynam., Volume 81 (2015), pp. 97-102

[2] Bialecki, B.; Fairweather, G. Orthogonal spline collocation methods for partial differential equations, J. Comput. Appl. Math., Volume 128 (2001), pp. 55-82

[3] Bialecki, B.; Fairweather, G.; Karageorghis, A.; Nguyen, Q. N. Optimal superconvergent one step quadratic spline collocation methods , BIT, Volume 48 (2008), pp. 449-472

[4] Bouzid, N.; Merad, M.; Baleanu, D. On fractional Duffin-Kemme-Petiau equation, Few-Body Syst., Volume 57 (2016), pp. 265-273

[5] Chato, J. C. Reflections on the History of Heat and Mass Transfer in Bioengineering , J. Biomech. Eng., Volume 103 (1981), pp. 97-101

[6] Christara, C. C. Quadratic spline collocation methods for elliptic partial differential equations, BIT, Volume 34 (1994), pp. 33-61

[7] Damor, R. S.; Kumar, S.; Shukla, A. K. Numerical simulation of fractional bioheat equation in hyperthermia treatment, J. Mech. Med. Biol., Volume 14 (2014), pp. 1-15

[8] Fairweather, G.; Karageorghis, A.; Maack, J. Compact optimal quadratic spline collocation methods for the Helmholtz equation, J. Comput. Phys., Volume 230 (2011), pp. 2880-2895

[9] Gupta, P. K.; Singh, J.; K. N. Rai Numerical simulation for heat transfer in tissues during thermal therapy, J. Thermal Biol., Volume 35 (2010), pp. 295-301

[10] Hashemi, M. S.; Baleanu, D. On the time fractional generalized Fisher equation: group similarities and analytical solutions, Commun. Theor. Phys., Volume 65 (2016), pp. 11-16

[11] J. Hristov Approximate solutions to time-fractional models by integral-balance approach, Fractional dynamics, De Gruyter Open, Berlin, 2015

[12] Hristov, J. A unified nonlinear fractional equation of the diffusion-controlled surfactant adsorption: Reappraisal and new solution of the WardTordai problem, J. King Saud Univ. Sci., Volume 28 (2016), pp. 7-13

[13] Lakestani, M.; Dehghan, M. Collocation and finite difference-collocation methods for the solution of nonlinear Klein-Gordon equation, Comput. Phys. Comm., Volume 181 (2010), pp. 1392-1401

[14] Lenzi, E. K.; Vieira, D. S.; Lenzi, M. K.; Goncalves, G.; Leitoles, D. P. Solutions for a fractional diffusion equation with radial symmetry and integro-differential boundary conditions, Thermal Sci., Volume 19 (2015), pp. 1-6

[15] Liu, F.; Zhuang, P.; Anh, V.; Turner, I.; Burrage, K. Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation, Appl. Math. Comput., Volume 191 (2007), pp. 12-20

[16] Luo, W. H.; Huang, T. Z.; Wu, G. C.; Gu, X. M. Quadratic spline collocation method for the time fractional subdiffusion equation, Appl. Math. Comput., Volume 276 (2016), pp. 252-265

[17] Luo, W. H.; Wu, G. C. Quadratic spline collocation method and ecient preconditioner for the Helmholtz equation with Robbins boundary condition, J. Comput. Complex. Appl., Volume 2 (2016), pp. 24-37

[18] Mobayen, S.; Baleanu, D. Stability analysis and controller design for the performance improvement of disturbed nonlinear systems using adaptive global sliding mode control approach, Nonlinear Dynam., Volume 83 (2016), pp. 1557-1565

[19] Ooi, E. H.; Ang, W. T. A boundary element model of the human eye undergoing laser thermokeratoplasty, Comput. Biol. Med., Volume 38 (2008), pp. 727-737

[20] Podlubny, I. Fractional differential equations, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, Academic Press, Inc., San Diego, CA, 1999

[21] Saxena, R. K.; Mathai, A. M.; Haubold, H. J. On generalized fractional kinetic equations, Phys. A, Volume 344 (2004), pp. 657-664

[22] Saxena, R. K.; Mathai, A. M.; Haubold, H. J. An alternative method for solving a certain class of fractional kinetic equations, Astrophys. Space Sci. Proc., Springer, Heidelberg, 2010

[23] Singh, J.; Gupta, P. K.; K. N. Rai Solution of fractional bioheat equations by finite difference method and HPM, Math. Comput. Modelling, Volume 54 (2011), pp. 2316-2325

[24] Sun, H. G.; Chen, W.; Wei, H.; Chen, Y. Q. A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems, Eur. Phys. J. Spec. Top., 193, 185--192, 2011

[25] Tunç, M.; Çamdali, Ü.; Parmaksizoglu, C.; Çikrikçi, S. The bio-heat transfer equation and its applications in hyperthermia treatments, Eng. Comput., Volume 23 (2006), pp. 451-463

[26] Wu, G. C.; Baleanu, D.; Deng, Z. G.; Zeng, S. D. Lattice fractional diffusion equation in terms of a Riesz-Caputo difference, Phys. A, Volume 438 (2015), pp. 335-339

[27] Wu, G. C.; Baleanu, D.; Zeng, S. D.; Deng, Z. G. Discrete fractional diffusion equation, Nonlinear Dynam., Volume 80 (2015), pp. 281-286

[28] Xiao-Zhou, L.; Yi, Z.; Fei, Z.; Xiu-Fen, G. Estimation of temperature elevation generated by ultrasonic irradiation in biological tissues using the thermal wave method, Chinese Phys. B, Volume 22 (2013), pp. 1-024301

[29] Yang, Q.; Liu, F.; Turner, I. Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Model., Volume 34 (2010), pp. 200-218

[30] Yue, K.; Zhang, X.; Yu, F. An analytic solution of one-dimensional steady-state Pennes bioheat transfer equation in cylindrical coordinates, J. Thermal Sci., Volume 13 (2004), pp. 255-258

[31] Zhang, Y. N.; Sun, Z. Z.; Zhao, X. Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation, SIAM J. Numer. Anal., Volume 50 (2012), pp. 1535-1555

[32] Zhao, X.; Sun, Z. Z.; Z. P. Hao A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation, SIAM J. Sci. Comput., Volume 36 (2014), pp. 2865-2886

[33] Zhao, X.; Xu, Q. Efficient numerical schemes for fractional sub-diffusion equation with the spatially variable coefficient, Appl. Math. Model., Volume 38 (2014), pp. 3848-3859

Cité par Sources :