A converse result concerning the periodic structure of commuting affine circle maps
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 7, p. 5041-5060.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We analyze the set of periods of a class of maps $\phi_{d,\kappa}: \mathbb{Z}_\Delta\rightarrow \mathbb{Z}_\Delta$ defined by $\phi_{d,\kappa}(x)=dx+\kappa,\quad d,\kappa\in\mathbb{Z}_\Delta$, where $\Delta$ is an integer greater than 1. This study is important to characterize completely the period sets of alternated systems $f; g; f; g,... $, where $f; g : \mathbb{S}_1 \rightarrow \mathbb{S}_1$ are affine circle maps that commute, and to solve the converse problem of constructing commuting affine circle maps having a prescribed set of periods.
DOI : 10.22436/jnsa.009.07.08
Classification : 37E10, 11A07
Keywords: Affine maps, alternated system, periods, circle maps, degree, combinatorial dynamics, ring of residues modulo m, Abelian multiplicative group of residues modulo m, Euler function, congruence, order, generator.

Peña, José Salvador Cánovas 1 ; Bas, Antonio Linero 2 ; López, Gabriel Soler 3

1 Departamento de Matematica Aplicada y Estadistica, Universidad Politecnica de Cartagena, Campus Muralla del Mar, 30203{Cartagena, Spain
2 Department of Mathematics, Universidad de Murcia, Campus de Espinardo, 30100-Murcia, Spain
3 Departamento de Matematica Aplicada y Estadistica, Universidad Politecnica de Cartagena, Alfonso XIII 52, 30203{Cartagena, Spain
@article{JNSA_2016_9_7_a7,
     author = {Pe\~na, Jos\'e Salvador C\'anovas and Bas, Antonio Linero and L\'opez, Gabriel Soler},
     title = {A converse result concerning the periodic structure of commuting affine circle maps},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5041-5060},
     publisher = {mathdoc},
     volume = {9},
     number = {7},
     year = {2016},
     doi = {10.22436/jnsa.009.07.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.08/}
}
TY  - JOUR
AU  - Peña, José Salvador Cánovas
AU  - Bas, Antonio Linero
AU  - López, Gabriel Soler
TI  - A converse result concerning the periodic structure of commuting affine circle maps
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5041
EP  - 5060
VL  - 9
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.08/
DO  - 10.22436/jnsa.009.07.08
LA  - en
ID  - JNSA_2016_9_7_a7
ER  - 
%0 Journal Article
%A Peña, José Salvador Cánovas
%A Bas, Antonio Linero
%A López, Gabriel Soler
%T A converse result concerning the periodic structure of commuting affine circle maps
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5041-5060
%V 9
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.08/
%R 10.22436/jnsa.009.07.08
%G en
%F JNSA_2016_9_7_a7
Peña, José Salvador Cánovas; Bas, Antonio Linero; López, Gabriel Soler. A converse result concerning the periodic structure of commuting affine circle maps. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 7, p. 5041-5060. doi : 10.22436/jnsa.009.07.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.08/

[1] Alsedà, L.; Llibre, J.; Misiurewicz, M. Combinatorial dynamics and entropy in dimension one, Advanced Series in Nonlinear Dynamics, World Scientific Publishing Co., Inc., River Edge, NJ, 1993

[2] Apostol, T. M. Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976

[3] Arnold, V. I. The topology of algebra: combinatorics of squaring, (Russian) Funktsional. Anal. i Prilozhen., 37 (2003), 20-35, translation in Funct. Anal. Appl., Volume 37 (2003), pp. 177-190

[4] Cánovas, J. S.; Linero, A. Periodic structure of alternating continuous interval maps, J. Difference Equ. Appl., Volume 12 (2006), pp. 847-858

[5] Cánovas, J. S.; Bas, A. Linero; López, G. Soler Periods of alternated systems generated by affine circle maps, J. Difference Equ. Appl., Volume 22 (2016), pp. 441-467

[6] Bas, A. Linero Advances in discrete dynamics (Chapter 1. Periodic structure of discrete dynamical systems and global periodicity), Nova Science Publishers, NY, USA, 2013

[7] Šarkovskiĭ, O. M. Co-existence of cycles of a continuous mapping of the line into itself, (Russian) Ukrain. Mat. Z., Volume 16 (1964), pp. 61-71

[8] Šarkovskiĭ, O. M. n cycles and the structure of a continuous mapping, (Russian) Ukrain. Mat. Z., Volume 17 (1965), pp. 104-111

[9] Šharkovskiĭ, A. N. Coexistence of cycles of a continuous map of the line into itself, Translated from the Russian by J. Tolosa, Proceedings of the Conference ''Thirty Years after Sharkovskiĭ's Theorem: New Perspectives'', Murcia, (1994), Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 5 (1995), pp. 1263-1273

[10] Uribe-Vargas, R. Topology of dynamical systems in finite groups and number theory, Bull. Sci. Math., Volume 130 (2006), pp. 377-402

Cité par Sources :