On new traveling wave solutions of potential KdV and (3+1)-dimensional Burgers equations
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 7, p. 5029-5040.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This paper acquires soliton solutions of the potential KdV (PKdV) equation and the (3+1)-dimensional Burgers equation (BE) by the two variables $(\frac{G'}{ G} ,\frac{ 1}{ G})$ expansion method (EM). Obtained soliton solutions are designated in terms of kink, bell-shaped solitary wave, periodic and singular periodic wave solutions. These solutions may be useful and desirable to explain some nonlinear physical phenomena.
DOI : 10.22436/jnsa.009.07.07
Classification : 35Q53, 35C08, 35C07
Keywords: \((\frac{G'}{ G}، \frac{ 1}{ G})\) -EM, the PKdV equation, the (3+1)-dimensional BE, hyperbolic solution, periodic solution, rational solution.

Tchier, Fairouz 1 ; Inan, Ibrahim E. 2 ; Ugurlu, Yavuz 3 ; Inc, Mustafa 3 ; Baleanu, Dumitru 4

1 Department of Mathematics, King Saud University, P. O. Box 22452, Riyadh 11495, Saudi Arabia
2 Faculty of Education, Firat University, 23119 Elazig, Turkey
3 Science Faculty, Department of Mathematics, Firat University, 23119 Elazig, Turkey
4 Department of Mathematics, Cankaya University, Ogretmenler Cad. 14 06530, Balgat, Ankara, Turkey;Institute of Space Sciences, Magurele-Bucharest, Romania
@article{JNSA_2016_9_7_a6,
     author = {Tchier, Fairouz and Inan, Ibrahim E. and Ugurlu, Yavuz and Inc, Mustafa and Baleanu, Dumitru},
     title = {On new traveling wave solutions of potential {KdV} and (3+1)-dimensional {Burgers} equations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5029-5040},
     publisher = {mathdoc},
     volume = {9},
     number = {7},
     year = {2016},
     doi = {10.22436/jnsa.009.07.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.07/}
}
TY  - JOUR
AU  - Tchier, Fairouz
AU  - Inan, Ibrahim E.
AU  - Ugurlu, Yavuz
AU  - Inc, Mustafa
AU  - Baleanu, Dumitru
TI  - On new traveling wave solutions of potential KdV and (3+1)-dimensional Burgers equations
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5029
EP  - 5040
VL  - 9
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.07/
DO  - 10.22436/jnsa.009.07.07
LA  - en
ID  - JNSA_2016_9_7_a6
ER  - 
%0 Journal Article
%A Tchier, Fairouz
%A Inan, Ibrahim E.
%A Ugurlu, Yavuz
%A Inc, Mustafa
%A Baleanu, Dumitru
%T On new traveling wave solutions of potential KdV and (3+1)-dimensional Burgers equations
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5029-5040
%V 9
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.07/
%R 10.22436/jnsa.009.07.07
%G en
%F JNSA_2016_9_7_a6
Tchier, Fairouz; Inan, Ibrahim E.; Ugurlu, Yavuz; Inc, Mustafa; Baleanu, Dumitru. On new traveling wave solutions of potential KdV and (3+1)-dimensional Burgers equations. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 7, p. 5029-5040. doi : 10.22436/jnsa.009.07.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.07/

[1] Dai, C. Q.; Wang, Y. Y. New exact solutions of the (3+1)-dimensional Burgers system, Phys. Lett. A, Volume 373 (2009), pp. 181-187

[2] Dai, C. Q.; Yu, F. B. Special solitonic localized structures for the (3 + 1)-dimensional Burgers equation in water waves, Wave Motion, Volume 51 (2014), pp. 52-59

[3] Elwakil, S. A.; El-labany, S. K.; Zahran, M. A.; Sabry, R. Modified extended tanh-function method for solving nonlinear partial differential equations, Phys. Lett. A, Volume 299 (2002), pp. 179-188

[4] Fan, E. Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A, Volume 277 (2000), pp. 212-218

[5] Fu, Z.; Liu, S.; Liu, S.; Zhao, Q. New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations, Phys. Lett. A, Volume 290 (2001), pp. 72-76

[6] Guo, S.; Zhou, Y. The extended (\(\frac{G'}{ G}\) )-expansion method and its applications to the Whitham-Broer-Kaup-like equations and coupled Hirota-Satsuma KdV equations, Appl. Math. Comput., Volume 215 (2010), pp. 3214-3221

[7] He, J. H.; Wu, X. H. Exp-function method for nonlinear wave equations, Chaos Solitons Fractals, Volume 30 (2006), pp. 700-708

[8] Li, L.; Li, E.; Wang, M. The (\(\frac{G'}{ G} ,\frac{ 1}{ G}\) )-expansion method and its application to travelling wave solutions of the Zakharov equations, Appl. Math. J. Chinese Univ. Ser. B, Volume 25 (2010), pp. 454-462

[9] Lü, H. L.; Liu, X. Q.; Niu, L. A generalized (\(\frac{G'}{ G})\)-expansion method and its applications to nonlinear evolution equations, Appl. Math. Comput., Volume 215 (2010), pp. 3811-3816

[10] Lu, B.; Zhang, H. Q.; Xie, F. D. Travelling wave solutions of nonlinear partial equations by using the first integral method, Appl. Math. Comput., Volume 216 (2010), pp. 1329-1336

[11] iet, W. Mal Solitary wave solutions of nonlinear wave equations, Amer. J. Phys., Volume 60 (1992), pp. 650-654

[12] Parkes, E. J.; Duffy, B. R. An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations, Comput. Phys. Commun., Volume 98 (1996), pp. 288-300

[13] Wang, M.; Li, X.; Zhang, J. The (\(\frac{G'}{ G})\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A, Volume 372 (2008), pp. 417-423

[14] Wang, G. W.; Xu, T. Z.; Ebadi, G.; Johnson, S.; Strong, A. J.; Biswas, A. Singular solitons, shock waves, and other solutions to potential KdV equation, Nonlinear Dynam., Volume 76 (2014), pp. 1059-1068

[15] Wazwaz, A. M. Multiple soliton solutions and multiple singular soliton solutions for the (3 + 1)-dimensional Burgers equations, Appl. Math. Comput., Volume 204 (2008), pp. 942-948

[16] Zayed, E. M. E.; Abdelaziz, M. A. M. The two-variable (\(\frac{G'}{ G} ,\frac{ 1}{ G}\) )-expansion method for solving the nonlinear KdV-mKdV equation, Math. Probl. Eng., Volume 2012 (2012), pp. 1-14

[17] Zayed, E. M. E.; Alurrfi, K. A. E. The (\(\frac{G'}{ G} ,\frac{ 1}{ G}\) )-expansion method and its applications for solving two higher order nonlinear evolution equations, Math. Probl. Eng., Volume 2014 (2014), pp. 1-20

[18] Zayed, E. M. E.; Ibrahim, S. A. Hoda; Abdelaziz, M. A. M. Traveling wave solutions of the nonlinear (3 + 1)- dimensional Kadomtsev-Petviashvili equation using the two variables (\(\frac{G'}{ G} ,\frac{ 1}{ G}\) )-expansion method, J. Appl. Math., Volume 2012 (2012), pp. 1-8

[19] Zheng, X.; Chen, Y.; Zhang, H. Generalized extended tanh-function method and its application to (1+1)-dimensional dispersive long wave equation, Phys. Lett. A, Volume 311 (2003), pp. 145-157

Cité par Sources :