Voir la notice de l'article provenant de la source International Scientific Research Publications
Tchier, Fairouz 1 ; Inan, Ibrahim E. 2 ; Ugurlu, Yavuz 3 ; Inc, Mustafa 3 ; Baleanu, Dumitru 4
@article{JNSA_2016_9_7_a6, author = {Tchier, Fairouz and Inan, Ibrahim E. and Ugurlu, Yavuz and Inc, Mustafa and Baleanu, Dumitru}, title = {On new traveling wave solutions of potential {KdV} and (3+1)-dimensional {Burgers} equations}, journal = {Journal of nonlinear sciences and its applications}, pages = {5029-5040}, publisher = {mathdoc}, volume = {9}, number = {7}, year = {2016}, doi = {10.22436/jnsa.009.07.07}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.07/} }
TY - JOUR AU - Tchier, Fairouz AU - Inan, Ibrahim E. AU - Ugurlu, Yavuz AU - Inc, Mustafa AU - Baleanu, Dumitru TI - On new traveling wave solutions of potential KdV and (3+1)-dimensional Burgers equations JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 5029 EP - 5040 VL - 9 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.07/ DO - 10.22436/jnsa.009.07.07 LA - en ID - JNSA_2016_9_7_a6 ER -
%0 Journal Article %A Tchier, Fairouz %A Inan, Ibrahim E. %A Ugurlu, Yavuz %A Inc, Mustafa %A Baleanu, Dumitru %T On new traveling wave solutions of potential KdV and (3+1)-dimensional Burgers equations %J Journal of nonlinear sciences and its applications %D 2016 %P 5029-5040 %V 9 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.07/ %R 10.22436/jnsa.009.07.07 %G en %F JNSA_2016_9_7_a6
Tchier, Fairouz; Inan, Ibrahim E.; Ugurlu, Yavuz; Inc, Mustafa; Baleanu, Dumitru. On new traveling wave solutions of potential KdV and (3+1)-dimensional Burgers equations. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 7, p. 5029-5040. doi : 10.22436/jnsa.009.07.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.07/
[1] New exact solutions of the (3+1)-dimensional Burgers system, Phys. Lett. A, Volume 373 (2009), pp. 181-187
[2] Special solitonic localized structures for the (3 + 1)-dimensional Burgers equation in water waves, Wave Motion, Volume 51 (2014), pp. 52-59
[3] Modified extended tanh-function method for solving nonlinear partial differential equations, Phys. Lett. A, Volume 299 (2002), pp. 179-188
[4] Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A, Volume 277 (2000), pp. 212-218
[5] New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations, Phys. Lett. A, Volume 290 (2001), pp. 72-76
[6] The extended (\(\frac{G'}{ G}\) )-expansion method and its applications to the Whitham-Broer-Kaup-like equations and coupled Hirota-Satsuma KdV equations, Appl. Math. Comput., Volume 215 (2010), pp. 3214-3221
[7] Exp-function method for nonlinear wave equations, Chaos Solitons Fractals, Volume 30 (2006), pp. 700-708
[8] The (\(\frac{G'}{ G} ,\frac{ 1}{ G}\) )-expansion method and its application to travelling wave solutions of the Zakharov equations, Appl. Math. J. Chinese Univ. Ser. B, Volume 25 (2010), pp. 454-462
[9] A generalized (\(\frac{G'}{ G})\)-expansion method and its applications to nonlinear evolution equations, Appl. Math. Comput., Volume 215 (2010), pp. 3811-3816
[10] Travelling wave solutions of nonlinear partial equations by using the first integral method, Appl. Math. Comput., Volume 216 (2010), pp. 1329-1336
[11] Solitary wave solutions of nonlinear wave equations, Amer. J. Phys., Volume 60 (1992), pp. 650-654
[12] An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations, Comput. Phys. Commun., Volume 98 (1996), pp. 288-300
[13] The (\(\frac{G'}{ G})\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A, Volume 372 (2008), pp. 417-423
[14] Singular solitons, shock waves, and other solutions to potential KdV equation, Nonlinear Dynam., Volume 76 (2014), pp. 1059-1068
[15] Multiple soliton solutions and multiple singular soliton solutions for the (3 + 1)-dimensional Burgers equations, Appl. Math. Comput., Volume 204 (2008), pp. 942-948
[16] The two-variable (\(\frac{G'}{ G} ,\frac{ 1}{ G}\) )-expansion method for solving the nonlinear KdV-mKdV equation, Math. Probl. Eng., Volume 2012 (2012), pp. 1-14
[17] The (\(\frac{G'}{ G} ,\frac{ 1}{ G}\) )-expansion method and its applications for solving two higher order nonlinear evolution equations, Math. Probl. Eng., Volume 2014 (2014), pp. 1-20
[18] Traveling wave solutions of the nonlinear (3 + 1)- dimensional Kadomtsev-Petviashvili equation using the two variables (\(\frac{G'}{ G} ,\frac{ 1}{ G}\) )-expansion method, J. Appl. Math., Volume 2012 (2012), pp. 1-8
[19] Generalized extended tanh-function method and its application to (1+1)-dimensional dispersive long wave equation, Phys. Lett. A, Volume 311 (2003), pp. 145-157
Cité par Sources :