Voir la notice de l'article provenant de la source International Scientific Research Publications
$x_{n+1} = \alpha_nf(x_n) + \beta_nx_n +\gamma_nS_nx_n,$ |
Fan, Qinwei 1 ; Wang, Xiaoyin 2
@article{JNSA_2016_9_7_a5, author = {Fan, Qinwei and Wang, Xiaoyin}, title = {An explicit iterative algorithm for \(k\)-strictly pseudo-contractive mappings in {Banach} spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {5021-5028}, publisher = {mathdoc}, volume = {9}, number = {7}, year = {2016}, doi = {10.22436/jnsa.009.07.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.06/} }
TY - JOUR AU - Fan, Qinwei AU - Wang, Xiaoyin TI - An explicit iterative algorithm for \(k\)-strictly pseudo-contractive mappings in Banach spaces JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 5021 EP - 5028 VL - 9 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.06/ DO - 10.22436/jnsa.009.07.06 LA - en ID - JNSA_2016_9_7_a5 ER -
%0 Journal Article %A Fan, Qinwei %A Wang, Xiaoyin %T An explicit iterative algorithm for \(k\)-strictly pseudo-contractive mappings in Banach spaces %J Journal of nonlinear sciences and its applications %D 2016 %P 5021-5028 %V 9 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.06/ %R 10.22436/jnsa.009.07.06 %G en %F JNSA_2016_9_7_a5
Fan, Qinwei; Wang, Xiaoyin. An explicit iterative algorithm for \(k\)-strictly pseudo-contractive mappings in Banach spaces. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 7, p. 5021-5028. doi : 10.22436/jnsa.009.07.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.06/
[1] Convergence theorems for pointwise asymptotically strict pseudo-contractions in Hilbert spaces, Numer. Funct. Anal. Optim., Volume 37 (2016), pp. 284-303
[2] Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl., Volume 20 (1967), pp. 197-228
[3] Iterative approximation of fixed points of Lipschitz pseudocontractive maps, Proc. Amer. Math. Soc., Volume 129 (2001), pp. 2245-2251
[4] Convergence of a Halpern-type iteration algorithm for a class of pseudo-contractive mappings, Nonlinear Anal., Volume 69 (2008), pp. 2286-2292
[5] Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 957-961
[6] Weak and strong convergence of an iterative algorithm for Lipschitz pseudo-contractive maps in Hilbert spaces, Adv. Fixed Point Theory, Volume 6 (2016), pp. 194-206
[7] A general composite iterative method for strictly pseudocontractive mappings in Hilbert spaces, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-21
[8] Strong convergence of modified Mann iterations, Nonlinear Anal., Volume 61 (2005), pp. 51-60
[9] Approximation de points fixes de contractions, (French) C. R. Acad. Sci. Paris Sér. A-B, Volume 284 (1977), pp. 1357-1359
[10] Mean value methods in iterations, Proc. Amer. Math. Soc., Volume 4 (1953), pp. 506-510
[11] Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl., Volume 329 (2007), pp. 336-349
[12] Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl., Volume 279 (2003), pp. 372-379
[13] Mann-iteration process for the fixed point of strictly pseudocontractive mapping in some Banach spaces, J. Korean Math. Soc., Volume 31 (1994), pp. 333-337
[14] On the weak convergence of iterative sequences for generalized equilibrium problems and strictly pseudocontractive mappings, Optimization, Volume 61 (2012), pp. 805-821
[15] Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., Volume 67 (1979), pp. 274-276
[16] Approximating fixed points of nonexpansive mappings, Panamer. Math. J., Volume 4 (1994), pp. 23-28
[17] Strong convergence of Krasnoselskii and Mann's type sequences for one-parameter nonexpansive semi- groups without Bochner integrals, J. Math. Anal. Appl., Volume 305 (2005), pp. 227-239
[18] Approximation of fixed points of nonexpansive mappings, Arch. Math. (Basel), Volume 58 (1992), pp. 486-491
[19] Iterative algorithms for nonlinear operators, J. London Math. Soc., Volume 66 (2002), pp. 240-256
[20] An iterative approach to quadratic optimization, J. Optim. Theory Appl., Volume 116 (2003), pp. 659-678
[21] Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl., Volume 298 (2004), pp. 279-291
[22] Algorithms with strong convergence for the split common solution of the feasibility problem and fixed point problem, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-14
[23] Split common fixed point problem for two quasi-pseudo-contractive operators and its algorithm construction , Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-19
[24] Construction of minimum-norm fixed points of pseudocontractions in Hilbert spaces, J. Inequal. Appl., Volume 2014 (2014), pp. 1-14
[25] Strong convergence of approximated iterations for asymptotically pseudocontractive mappings , Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-13
[26] Coupling Ishikawa algorithms with hybrid techniques for pseudocontractive mappings, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-8
[27] Strong convergence of a self-adaptive method for the split feasibility problem, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-12
[28] An algorithm for a common fixed point of a family of pseudocontractive mappings, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-14
[29] Convergence theorems of fixed points for \(\kappa\)-strict pseudo-contractions in Hilbert spaces, Nonlinear Anal., Volume 69 (2008), pp. 456-462
Cité par Sources :