Existence of solutions for fractional integral boundary value problems with $p(t)$-Laplacian operator
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 7, p. 5000-5010.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This paper aims to investigate the existence of solutions for fractional integral boundary value problems (BVPs for short) with $p(t)$-Laplacian operator. By using the fixed point theorem and the coincidence degree theory, two existence results are obtained, which enrich existing literatures. Some examples are supplied to verify our main results.
DOI : 10.22436/jnsa.009.07.04
Classification : 34A08, 34B10, 47N20, 34B15
Keywords: Fractional differential equation, boundary value problem, \(p(t)\)-Laplacian operator, fixed point theorem, coincidence degree theory.

Shen, Tengfei 1 ; Liu, Wenbin 1

1 College of Sciences, China University of Mining and Technology, Xuzhou 221116, P. R. China
@article{JNSA_2016_9_7_a3,
     author = {Shen, Tengfei and Liu, Wenbin},
     title = {Existence of solutions for fractional integral boundary value problems with {\(p(t)\)-Laplacian} operator},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5000-5010},
     publisher = {mathdoc},
     volume = {9},
     number = {7},
     year = {2016},
     doi = {10.22436/jnsa.009.07.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.04/}
}
TY  - JOUR
AU  - Shen, Tengfei
AU  - Liu, Wenbin
TI  - Existence of solutions for fractional integral boundary value problems with \(p(t)\)-Laplacian operator
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5000
EP  - 5010
VL  - 9
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.04/
DO  - 10.22436/jnsa.009.07.04
LA  - en
ID  - JNSA_2016_9_7_a3
ER  - 
%0 Journal Article
%A Shen, Tengfei
%A Liu, Wenbin
%T Existence of solutions for fractional integral boundary value problems with \(p(t)\)-Laplacian operator
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5000-5010
%V 9
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.04/
%R 10.22436/jnsa.009.07.04
%G en
%F JNSA_2016_9_7_a3
Shen, Tengfei; Liu, Wenbin. Existence of solutions for fractional integral boundary value problems with \(p(t)\)-Laplacian operator. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 7, p. 5000-5010. doi : 10.22436/jnsa.009.07.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.04/

[1] Ahmad, B.; Agarwal, R. P. Some new versions of fractional boundary value problems with slit-strips conditions, Bound. Value Probl., Volume 2014 (2014), pp. 1-12

[2] C. Bai Existence of positive solutions for a functional fractional boundary value problem, Abstr. Appl. Anal., Volume 2010 (2010), pp. 1-13

[3] C. Bai Existence of positive solutions for boundary value problems of fractional functional differential equations, Electron. J. Qual. Theory Differ. Equ., Volume 2010 (2010), pp. 1-14

[4] Bai, J.; Feng, X. C. Fractional-order anisotropic diffusion for image denoising, IEEE Trans. Image Process., Volume 16 (2007), pp. 2492-2502

[5] Bai, Z.; Zhang, Y. Solvability of fractional three-point boundary value problems with nonlinear growth, Appl. Math. Comput., Volume 218 (2011), pp. 1719-1725

[6] Cabada, A.; Wang, G. Positive solutions of nonlinear fractional differential equations with integral boundary value conditions, J. Math. Anal. Appl., Volume 389 (2012), pp. 403-411

[7] G. Chai Positive solutions for boundary value problem of fractional differential equation with p-Laplacian operator, Bound. Value Probl., Volume 2012 (2012), pp. 1-20

[8] Chen, Y.; Levine, S.; Rao, M. Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., Volume 66 (2006), pp. 1383-1406

[9] Chen, T.; W. Liu An anti-periodic boundary value problem for the fractional differential equation with a p- Laplacian operator, Appl. Math. Lett., Volume 25 (2012), pp. 1671-1675

[10] Sen, M. De la About robust stability of Caputo linear fractional dynamic systems with time delays through fixed point theory, Fixed Point Theory Appl., Volume 2011 (2011), pp. 1-19

[11] Du, Z.; Lin, X.; C. C. Tisdell A multiplicity result for p-Lapacian boundary value problems via critical points theorem, Appl. Math. Comput., Volume 205 (2008), pp. 231-237

[12] Fan, X.; Zhang, Q.; Zhao, D. Eigenvalues of p(x)-Laplacian Dirichlet problem, J. Math. Anal. Appl., Volume 302 (2005), pp. 306-317

[13] Ge, W. Boundary value problems for ordinary nonlinear differential equations, Science Press, Beijing, China, 2007

[14] Ge, W.; Ren, J. An extension of Mawhin's continuation theorem and its application to boundary value problems with a p-Laplacian, Nonlinear Anal., Volume 58 (2004), pp. 477-488

[15] Hu, Z.; W. Liu Solvability for fractional order boundary value problems at resonance, Bound. Value Probl., Volume 2011 (2011), pp. 1-10

[16] Hu, Z.; Liu, W.; Liu, J. Existence of solutions of fractional differential equation with p-Laplacian operator at resonance, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-7

[17] Hu, J. B.; Lu, G. P.; Zhang, S. B.; Zhao, L. D. Lyapunov stability theorem about fractional system without and with delay, Commun. Nonlinear Sci. Numer. Simul., Volume 20 (2015), pp. 905-913

[18] Jiang, W. The existence of solutions to boundary value problems of fractional differential equations at resonance, Nonlinear Anal., Volume 74 (2011), pp. 1987-1994

[19] B. Kawohl On a family of torsional creep problems, J. Reine Angew. Math., Volume 410 (1990), pp. 1-22

[20] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J. Theory and applications of fractional differential equations, North- Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006

[21] Kuang, J. C. Applied Inequalities, Shandong Science and Technology Press, Jinan, China, 2004

[22] Leibenson, L. S. General problem of the movement of a compressible fluid in a porous medium, (Russian), Bull. Acad. Sci. URSS. Sér. Géograph. Géophys., Volume 9 (1983), pp. 7-10

[23] Leszczynski, J. S.; T. Blaszczyk Modeling the transition between stable and unstable operation while emptying a silo , Granular Matter, Volume 13 (2011), pp. 429-438

[24] Magin, R. L. Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl., Volume 59 (2010), pp. 1586-1593

[25] Mahmudov, N. I.; Unul, S. Existence of solutions of fractional boundary value problems with p-Laplacian operator, Bound. Value Probl., Volume 2015 (2015), pp. 1-16

[26] Mawhin, J. Topological degree and boundary value problems for nonlinear differential equations, Topological methods for ordinary differential equations, Lecture Notes in Math., Springer, Berlin, 1993

[27] Pélissier, M. C.; Reynaud, L. Étude d'un modèle mathématique d'écoulement de glacier, (French), C. R. Acad. Sci. Paris Sér. A, Volume 279 (1974), pp. 531-534

[28] Rakkiyappan, R.; Cao, J.; Velmurugan, G. Existence and uniform stability analysis of fractional-order complex- valued neural networks with time delays, IEEE Trans. Neural Netw. Learn. Syst., Volume 26 (2015), pp. 84-97

[29] Růžička, M. Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2000

[30] Szymanek, E. The application of fractional order differential calculus for the description of temperature profiles in a granular layer, Adv. Theory Appl. Non-integer Order Syst., Springer Inter. Publ., Switzerland, 2013

[31] Zhang, Q.; Wang, Y.; Z. Qiu Existence of solutions and boundary asymptotic behavior of p(r)-Laplacian equation multi-point boundary value problems, Nonlinear Anal., Volume 72 (2010), pp. 2950-2973

[32] Zhikov, V. V. Averaging of functionals of the calculus of variations and elasticity theory, (Russian), Izv. Akad. Nauk SSSR Ser. Mat., Volume 50 (1986), pp. 675-710

Cité par Sources :