Bifurcation analysis in a discrete SIR epidemic model with the saturated contact rate and vertical transmission
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 7, p. 4976-4989.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The aim of paper is dealing with the dynamical behaviors of a discrete SIR epidemic model with the saturated contact rate and vertical transmission. More precisely, we investigate the local stability of equilibriums, the existence, stability and direction of flip bifurcation and Neimark-Sacker bifurcation of the model by using the center manifold theory and normal form method. Finally, the numerical simulations are provided for justifying the validity of the theoretical analysis.
DOI : 10.22436/jnsa.009.07.02
Classification : 92D30, 37N25, 39A28
Keywords: Discrete SIR epidemic model, stability, flip bifurcation, Neimark-Sacker bifurcation.

Du, Wenju 1 ; Zhang, Jiangang 2 ; Qin, Shuang 2 ; Yu, Jianning 1

1 School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, China
2 Department of Mathematics, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, China
@article{JNSA_2016_9_7_a1,
     author = {Du, Wenju and Zhang, Jiangang and Qin, Shuang and Yu, Jianning},
     title = {Bifurcation analysis in a discrete {SIR} epidemic model with the saturated contact rate and vertical transmission},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {4976-4989},
     publisher = {mathdoc},
     volume = {9},
     number = {7},
     year = {2016},
     doi = {10.22436/jnsa.009.07.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.02/}
}
TY  - JOUR
AU  - Du, Wenju
AU  - Zhang, Jiangang
AU  - Qin, Shuang
AU  - Yu, Jianning
TI  - Bifurcation analysis in a discrete SIR epidemic model with the saturated contact rate and vertical transmission
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 4976
EP  - 4989
VL  - 9
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.02/
DO  - 10.22436/jnsa.009.07.02
LA  - en
ID  - JNSA_2016_9_7_a1
ER  - 
%0 Journal Article
%A Du, Wenju
%A Zhang, Jiangang
%A Qin, Shuang
%A Yu, Jianning
%T Bifurcation analysis in a discrete SIR epidemic model with the saturated contact rate and vertical transmission
%J Journal of nonlinear sciences and its applications
%D 2016
%P 4976-4989
%V 9
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.02/
%R 10.22436/jnsa.009.07.02
%G en
%F JNSA_2016_9_7_a1
Du, Wenju; Zhang, Jiangang; Qin, Shuang; Yu, Jianning. Bifurcation analysis in a discrete SIR epidemic model with the saturated contact rate and vertical transmission. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 7, p. 4976-4989. doi : 10.22436/jnsa.009.07.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.02/

[1] Allen, L. J. Some discrete-time SI, SIR and SIS epidemic models, Math. Biosci., Volume 124 (1994), pp. 83-105

[2] Anderson, R. M.; May, R. M.; Anderson, B. Infectious diseases of humans: dynamics and control, Oxford Univ. Press, Oxford, 1992

[3] Aron, J. L.; Schwartz, I. B. Seasonality and period-doubling bifurcations in an epidemic model, J. Theoret. Biol., Volume 110 (1984), pp. 665-679

[4] Bjørnstad, O. N.; Finkenstaedt, B. F.; Greenfell, B. T. Dynamics of measles epidemics: estimating scaling of transmission rates using a time series SIR mode, Ecol. Monogr., Volume 72 (2002), pp. 169-184

[5] Cao, H.; Zhou, Y.; Song, B. Complex dynamics of discrete SEIS models with simple demography, Discrete Dyn. Nat. Soc., Volume 2011 (2011), pp. 1-21

[6] Castillo-Chavez, C.; Yakubu, A. A. Discrete-time SIS models with complex dynamics, Proceedings of the Third World Congress of Nonlinear Analysts, Nonliear Anal., Volume 47 (2001), pp. 4753-4762

[7] Chen, B.; Chen, J. Bifurcation and chaotic behavior of a discrete singular biological economic system, Appl. Math. Comput., Volume 219 (2012), pp. 2371-2386

[8] Elabbasy, E. M.; Elsadany, A. A.; Zhang, Y. Bifurcation analysis and chaos in a discrete reduced Lorenz system, Appl. Math. Comput., Volume 228 (2014), pp. 184-194

[9] Ghaziani, R. K.; Govaerts, W.; Sonck, C. Resonance and bifurcation in a discrete-time predator-prey system with Holling functional response, Nonlinear Anal. Real World Appl., Volume 13 (2012), pp. 1451-1465

[10] Guckenheimer, J.; Holmes, P. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Applied Mathematical Sciences, Springer-Verlag, New York, 1983

[11] He, Z.; Lai, X. Bifurcation and chaotic behavior of a discrete-time predator-prey system, Nonlinear Anal. Real World Appl., Volume 12 (2011), pp. 403-417

[12] Hu, X. L.; Sun, F. G.; Wang, C. X. Global analysis of SIR epidemic model with the saturated contact rate and vertical transmission, Basic Sci. J. textile Univ., Volume 23 (2010), pp. 120-122

[13] Hu, Z.; Teng, Z.; Jiang, H. Stability analysis in a class of discrete SIRS epidemic models, Nonlinear Anal. Real World Appl., Volume 13 (2012), pp. 2017-2033

[14] Hu, Z.; Teng, Z.; Zhang, L. Stability and bifurcation analysis of a discrete predator-prey model with nonmonotonic functional response, Nonlinear Anal. Real World Appl., Volume 12 (2011), pp. 2356-2377

[15] Hu, Z.; Teng, Z.; Zhang, L. Stability and bifurcation analysis in a discrete SIR epidemic model, Math. Comput. Simulation, Volume 97 (2014), pp. 80-93

[16] Kermack, W. O.; McKendrick, A. G. A contribution to the mathematical theory of epidemics, Proc. A., Math. Phys. Eng. Sci., Volume 115 (1927), pp. 700-721

[17] Li, Y. Dynamics of a discrete food-limited population model with time delay, Appl. Math. Comput., Volume 218 (2012), pp. 6954-6962

[18] Robinson, C. Dynamical models, stability, symbolic dynamics and chaos, CRC-Press, London, 1999

[19] Stone, L.; Olinky, R.; Huppert, A. Seasonal dynamics of recurrent epidemics, Nature, Volume 446 (2007), pp. 533-536

[20] Wang, C.; Li, X. Further investigations into the stability and bifurcation of a discrete predator-prey model, J. Math. Anal. Appl., Volume 422 (2015), pp. 920-939

[21] Yi, N.; Liu, P.; Zhang, Q. Bifurcations analysis and tracking control of an epidemic model with nonlinear incidence rate, Appl. Math. Model., Volume 36 (2012), pp. 1678-1696

[22] Zhang, G.; Shen, Y.; Chen, B. Bifurcation analysis in a discrete differential-algebraic predator-prey system, Appl. Math. Model., Volume 38 (2014), pp. 4835-4848

[23] Zhao, H.; Yuan, J.; Zhang, X. Stability and bifurcation analysis of reactiondiffusion neural networks with delays, Neurocomputing, Volume 147 (2015), pp. 280-290

Cité par Sources :