Voir la notice de l'article provenant de la source International Scientific Research Publications
Du, Wenju 1 ; Zhang, Jiangang 2 ; Qin, Shuang 2 ; Yu, Jianning 1
@article{JNSA_2016_9_7_a1, author = {Du, Wenju and Zhang, Jiangang and Qin, Shuang and Yu, Jianning}, title = {Bifurcation analysis in a discrete {SIR} epidemic model with the saturated contact rate and vertical transmission}, journal = {Journal of nonlinear sciences and its applications}, pages = {4976-4989}, publisher = {mathdoc}, volume = {9}, number = {7}, year = {2016}, doi = {10.22436/jnsa.009.07.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.02/} }
TY - JOUR AU - Du, Wenju AU - Zhang, Jiangang AU - Qin, Shuang AU - Yu, Jianning TI - Bifurcation analysis in a discrete SIR epidemic model with the saturated contact rate and vertical transmission JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 4976 EP - 4989 VL - 9 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.02/ DO - 10.22436/jnsa.009.07.02 LA - en ID - JNSA_2016_9_7_a1 ER -
%0 Journal Article %A Du, Wenju %A Zhang, Jiangang %A Qin, Shuang %A Yu, Jianning %T Bifurcation analysis in a discrete SIR epidemic model with the saturated contact rate and vertical transmission %J Journal of nonlinear sciences and its applications %D 2016 %P 4976-4989 %V 9 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.02/ %R 10.22436/jnsa.009.07.02 %G en %F JNSA_2016_9_7_a1
Du, Wenju; Zhang, Jiangang; Qin, Shuang; Yu, Jianning. Bifurcation analysis in a discrete SIR epidemic model with the saturated contact rate and vertical transmission. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 7, p. 4976-4989. doi : 10.22436/jnsa.009.07.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.02/
[1] Some discrete-time SI, SIR and SIS epidemic models, Math. Biosci., Volume 124 (1994), pp. 83-105
[2] Infectious diseases of humans: dynamics and control, Oxford Univ. Press, Oxford, 1992
[3] Seasonality and period-doubling bifurcations in an epidemic model, J. Theoret. Biol., Volume 110 (1984), pp. 665-679
[4] Dynamics of measles epidemics: estimating scaling of transmission rates using a time series SIR mode, Ecol. Monogr., Volume 72 (2002), pp. 169-184
[5] Complex dynamics of discrete SEIS models with simple demography, Discrete Dyn. Nat. Soc., Volume 2011 (2011), pp. 1-21
[6] Discrete-time SIS models with complex dynamics, Proceedings of the Third World Congress of Nonlinear Analysts, Nonliear Anal., Volume 47 (2001), pp. 4753-4762
[7] Bifurcation and chaotic behavior of a discrete singular biological economic system, Appl. Math. Comput., Volume 219 (2012), pp. 2371-2386
[8] Bifurcation analysis and chaos in a discrete reduced Lorenz system, Appl. Math. Comput., Volume 228 (2014), pp. 184-194
[9] Resonance and bifurcation in a discrete-time predator-prey system with Holling functional response, Nonlinear Anal. Real World Appl., Volume 13 (2012), pp. 1451-1465
[10] Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Applied Mathematical Sciences, Springer-Verlag, New York, 1983
[11] Bifurcation and chaotic behavior of a discrete-time predator-prey system, Nonlinear Anal. Real World Appl., Volume 12 (2011), pp. 403-417
[12] Global analysis of SIR epidemic model with the saturated contact rate and vertical transmission, Basic Sci. J. textile Univ., Volume 23 (2010), pp. 120-122
[13] Stability analysis in a class of discrete SIRS epidemic models, Nonlinear Anal. Real World Appl., Volume 13 (2012), pp. 2017-2033
[14] Stability and bifurcation analysis of a discrete predator-prey model with nonmonotonic functional response, Nonlinear Anal. Real World Appl., Volume 12 (2011), pp. 2356-2377
[15] Stability and bifurcation analysis in a discrete SIR epidemic model, Math. Comput. Simulation, Volume 97 (2014), pp. 80-93
[16] A contribution to the mathematical theory of epidemics, Proc. A., Math. Phys. Eng. Sci., Volume 115 (1927), pp. 700-721
[17] Dynamics of a discrete food-limited population model with time delay, Appl. Math. Comput., Volume 218 (2012), pp. 6954-6962
[18] Dynamical models, stability, symbolic dynamics and chaos, CRC-Press, London, 1999
[19] Seasonal dynamics of recurrent epidemics, Nature, Volume 446 (2007), pp. 533-536
[20] Further investigations into the stability and bifurcation of a discrete predator-prey model, J. Math. Anal. Appl., Volume 422 (2015), pp. 920-939
[21] Bifurcations analysis and tracking control of an epidemic model with nonlinear incidence rate, Appl. Math. Model., Volume 36 (2012), pp. 1678-1696
[22] Bifurcation analysis in a discrete differential-algebraic predator-prey system, Appl. Math. Model., Volume 38 (2014), pp. 4835-4848
[23] Stability and bifurcation analysis of reactiondiffusion neural networks with delays, Neurocomputing, Volume 147 (2015), pp. 280-290
Cité par Sources :