Voir la notice de l'article provenant de la source International Scientific Research Publications
Klin-eam, Chakkrid 1 ; Kaskasem, Prondanai 2 ; Suantai, Suthep 3
@article{JNSA_2016_9_7_a0, author = {Klin-eam, Chakkrid and Kaskasem, Prondanai and Suantai, Suthep}, title = {Hybrid method for the equilibrium problem and a family of generalized nonexpansive mappings in {Banach} spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {4963-4975}, publisher = {mathdoc}, volume = {9}, number = {7}, year = {2016}, doi = {10.22436/jnsa.009.07.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.01/} }
TY - JOUR AU - Klin-eam, Chakkrid AU - Kaskasem, Prondanai AU - Suantai, Suthep TI - Hybrid method for the equilibrium problem and a family of generalized nonexpansive mappings in Banach spaces JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 4963 EP - 4975 VL - 9 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.01/ DO - 10.22436/jnsa.009.07.01 LA - en ID - JNSA_2016_9_7_a0 ER -
%0 Journal Article %A Klin-eam, Chakkrid %A Kaskasem, Prondanai %A Suantai, Suthep %T Hybrid method for the equilibrium problem and a family of generalized nonexpansive mappings in Banach spaces %J Journal of nonlinear sciences and its applications %D 2016 %P 4963-4975 %V 9 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.01/ %R 10.22436/jnsa.009.07.01 %G en %F JNSA_2016_9_7_a0
Klin-eam, Chakkrid; Kaskasem, Prondanai; Suantai, Suthep. Hybrid method for the equilibrium problem and a family of generalized nonexpansive mappings in Banach spaces. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 7, p. 4963-4975. doi : 10.22436/jnsa.009.07.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.07.01/
[1] From optimization and variational inequalities to equilibrium problems, Math. Student, Volume 63 (1994), pp. 123-145
[2] Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., Volume 6 (2005), pp. 117-136
[3] A new projection and convergence theorems for the projections in Banach spaces, J. Approx. Theory, Volume 149 (2007), pp. 1-14
[4] Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim., Volume 13 (2002), pp. 938-945
[5] Generalized nonexpansive retractions and a proximal-type algorithm in Banach spaces, J. Nonlinear Convex Anal., Volume 8 (2007), pp. 197-209
[6] Mean value methods in iteration, Proc. Amer. Math. Soc., Volume 4 (1953), pp. 506-510
[7] Strong convergence to common fixed points of families of nonexpansive mappings in Banach spaces, J. Nonlinear Convex Anal., Volume 6 (2007), pp. 11-34
[8] Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl., Volume 279 (2003), pp. 372-379
[9] Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., Volume 67 (1979), pp. 247-276
[10] Nonlinear functional analysis, Fixed point theory and its applications, Yokohama Publ., Yokohama, 2000
[11] Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., Volume 341 (2008), pp. 276-286
[12] A strong convergence theorem for the equilibrium problem with a bifunction defined on the dual space of a Banach space, Fixed point theory and its applications, Yokohama Publ., Yokohama, Volume 197--209 (2008)
[13] On uniformly convex functions, J. Math. Anal. Appl., Volume 95 (1983), pp. 344-374
Cité par Sources :