Important inequalities for preinvex functions
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 6, p. 3570-3579.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The paper deals with fundamental inequalities for preinvex functions. The result relating to preinvex functions on the invex set that satisfies condition C shows that such functions are convex on every generated line segment. As an effect of that convexity, the paper provides symmetric forms of the most important inequalities which can be applied to preinvex functions.
DOI : 10.22436/jnsa.009.06.11
Classification : 26D15, 52A01
Keywords: Preinvex function, convex function, inequality.

Pavic, Zlatko 1 ; Wu, Shanhe 2 ; Novoselac, Vedran 1

1 Mechanical Engineering Faculty in Slavonski Brod, University of Osijek, Slavonski Brod, 35000, Croatia
2 Department of Mathematics, Longyan University, Longyan, Fujian, 364012, P. R. China
@article{JNSA_2016_9_6_a10,
     author = {Pavic, Zlatko and Wu, Shanhe and Novoselac, Vedran},
     title = {Important inequalities for preinvex functions},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {3570-3579},
     publisher = {mathdoc},
     volume = {9},
     number = {6},
     year = {2016},
     doi = {10.22436/jnsa.009.06.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.11/}
}
TY  - JOUR
AU  - Pavic, Zlatko
AU  - Wu, Shanhe
AU  - Novoselac, Vedran
TI  - Important inequalities for preinvex functions
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 3570
EP  - 3579
VL  - 9
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.11/
DO  - 10.22436/jnsa.009.06.11
LA  - en
ID  - JNSA_2016_9_6_a10
ER  - 
%0 Journal Article
%A Pavic, Zlatko
%A Wu, Shanhe
%A Novoselac, Vedran
%T Important inequalities for preinvex functions
%J Journal of nonlinear sciences and its applications
%D 2016
%P 3570-3579
%V 9
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.11/
%R 10.22436/jnsa.009.06.11
%G en
%F JNSA_2016_9_6_a10
Pavic, Zlatko; Wu, Shanhe; Novoselac, Vedran. Important inequalities for preinvex functions. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 6, p. 3570-3579. doi : 10.22436/jnsa.009.06.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.11/

[1] Barani, A.; Ghazanfari, A. G.; Dragomir, S. S. Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex , J. Inequal. Appl., Volume 2012 (2012), pp. 1-9

[2] J. Hadamard Etude sur les propriétés des fonctions entières et en particulier d'une fonction considerée par Riemann , J. Math. Pures Appl., Volume 58 (1893), pp. 171-215

[3] Hermite, Ch. Sur deux limites d'une intégrale définie, Mathesis, Volume 3 (1883), pp. 1-82

[4] I. Iscan Hermite-Hadamard's inequalities for preinvex functions via fractional integrals and related fractional inequalities, American J. Math. Anal., Volume 1 (2013), pp. 33-38

[5] Iscan, I.; S. Wu Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Comput., Volume 238 (2014), pp. 237-244

[6] J. L. W. V. Jensen Om konvekse Funktioner og Uligheder mellem Middelvrdier, Nyt Tidsskr. Math., Volume 16 (1905), pp. 49-68

[7] Mercer, A. McD. A variant of Jensen's inequality , J. Inequal. Pure Appl. Math., Volume 4 (2003), pp. 1-2

[8] Mohan, S. R.; S. K. Neogy On invex sets and preinvex functions, J. Math. Anal. Appl., Volume 189 (1995), pp. 901-908

[9] Niculescu, C. P.; Persson, L. E. Old and new on the Hermite-Hadamard inequality, Real Anal. Exchange, Volume 29 (2003), pp. 663-685

[10] Weir, T.; Jeyakumar, V. A class of nonconvex functions and mathematical programming, Bull. Austral. Math. Soc., Volume 38 (1988), pp. 177-189

[11] Weir, T.; B. Mond Pre-invex functions in multiple objective optimization, J. Math. Anal. Appl., Volume 136 (1988), pp. 29-38

[12] Wu, S. On the weighted generalization of the Hermite-Hadamard inequality and its applications, Rocky Mountain J. Math., Volume 39 (2009), pp. 1741-1749

[13] Wu, S.; L. Debnath Inequalities for convex sequences and their applications, Comput. Math. Appl., Volume 54 (2007), pp. 525-534

[14] Wu, S.; Sroysang, B.; Xie, J.-S.; Y. M. Chu Parametrized inequality of Hermite-Hadamard type for functions whose third derivative absolute values are quasi-convex, SpringerPlus, Volume 2015 (2015), pp. 1-9

[15] Yang, X. M.; Li, D. On properties of preinvex functions, J. Math. Anal. Appl., Volume 256 (2001), pp. 229-241

Cité par Sources :