The stability of sextic functional equation in fuzzy modular spaces
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 6, p. 3555-3569.

Voir la notice de l'article provenant de la source International Scientific Research Publications

By using the fixed point technique, we prove the stability of sixtic functional equations. Our results are studied and proved in the framework of fuzzy modular spaces (brie y, FM-spaces). The lower semi continuous (brie y, l.s.c.) and $\beta$-homogeneous are necessary conditions for this work.
DOI : 10.22436/jnsa.009.06.10
Classification : 46A80, 39B82
Keywords: Stability, sextic mapping, fuzzy modular space.

Wongkum, Kittipong 1 ; Kumam, Poom 2

1 Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand;Theoretical and Computational Science (TaCS) Center, Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand
2 Theoretical and Computational Science (TaCS) Center, Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand;Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand;Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
@article{JNSA_2016_9_6_a9,
     author = {Wongkum, Kittipong and Kumam, Poom},
     title = {The stability of sextic functional equation in fuzzy modular spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {3555-3569},
     publisher = {mathdoc},
     volume = {9},
     number = {6},
     year = {2016},
     doi = {10.22436/jnsa.009.06.10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.10/}
}
TY  - JOUR
AU  - Wongkum, Kittipong
AU  - Kumam, Poom
TI  - The stability of sextic functional equation in fuzzy modular spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 3555
EP  - 3569
VL  - 9
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.10/
DO  - 10.22436/jnsa.009.06.10
LA  - en
ID  - JNSA_2016_9_6_a9
ER  - 
%0 Journal Article
%A Wongkum, Kittipong
%A Kumam, Poom
%T The stability of sextic functional equation in fuzzy modular spaces
%J Journal of nonlinear sciences and its applications
%D 2016
%P 3555-3569
%V 9
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.10/
%R 10.22436/jnsa.009.06.10
%G en
%F JNSA_2016_9_6_a9
Wongkum, Kittipong; Kumam, Poom. The stability of sextic functional equation in fuzzy modular spaces. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 6, p. 3555-3569. doi : 10.22436/jnsa.009.06.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.10/

[1] Selvaraj, X. Arul; D. Sivakumar t-Norm (\(\lambda,\mu\))-Fuzzy Quotient Near-Rings and t-Norm (\(\lambda,\mu\))-Fuzzy Quasi-Ideals, Int. Math. Forum, Volume 6 (2011), pp. 203-209

[2] Cho, Y. J.; Ghaemi, M. B.; Choubin, M.; M. E. Gordji On the Hyers-Ulam stability of sextic functional equations in \(\beta\)-homogeneous probabilistic modular spaces, Math. Inequal. Appl., Volume 4 (2013), pp. 1097-1114

[3] Cho, Y. J.; Park, C.; Rassias, Th. M.; R. Saadati Stability of Functional Equations in Banach Algebras , Springer International, Switzerland, 2015

[4] Cho, Y. J.; Rassias, Th. M.; R. Saadati Stability of Functional Equations in Random Normed Spaces, Springer, New York, 2013

[5] George, A.; Veeramani, P. On some results in fuzzy metric spaces, Fuzzy Sets Sys., Volume 64 (1994), pp. 395-399

[6] Ghaemi, M. B.; Gordji, M. E.; Majani, H. Approximately quintic and sextic mappings on the probabilistic normed spaces, Bull. Korean Math. Soc., Volume 49 (2012), pp. 339-352

[7] Hyers, D. H. On the stability of the linear functional equation , Proc. Nat. Acad. Sci. U.S.A., Volume 27 (1941), pp. 222-224

[8] M. A. Khamsi Quasicontraction Mapping in modular spaces without \(\Delta_2\)-condition , Fixed Point Theory Appl., Volume 2008 (2008), pp. 1-6

[9] Kumam, P. Some Geometric Properties and Fixed Point Theorem in Modular Spaces, in Book: Fixed Point Theorem and its Applications, J. Garcia Falset, L. Fuster and B. Sims (Editors), Yokohama Publishers, Volume 1 (2004), pp. 173-188

[10] Kumam, P. Fixed Point Theorems for nonexpansive mappings in Modular Spaces, Arch. Math., (BRNO), Volume 40 (2004), pp. 345-353

[11] Musielak, J.; W. Orlicz On modular spaces, Studia Math., Volume 18 (1959), pp. 49-65

[12] H. Nakano Modular semi-ordered spaces, Tokyo, Japan, 1959

[13] Nourouzi, K. Probabilistic modular spaces , Proceedings of the 6th International ISAAC Congress, Ankara, Turkey, 2007

[14] Rassias, Th. M. On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., Volume 72 (1978), pp. 297-300

[15] Shen, Y.; Chen, W. On fuzzy modular spaces, J. Appl. Math., Volume 2013 (2013), pp. 1-8

[16] Ulam, S. M. Problems in Modern Mathematics, Wiley, New York, 1960

[17] R. Vasuki A common fixed point theorem in a fuzzy metric space, Fuzzy Sets Sys., Volume 97 (1998), pp. 395-397

[18] Wongkum, K.; Chaipunya, P.; Kumam, P. Some Analogies of the Banach Contraction Principle in Fuzzy Modular Spaces, Sci. World J., Volume 2013 (2013), pp. 1-4

Cité par Sources :