Voir la notice de l'article provenant de la source International Scientific Research Publications
Wongkum, Kittipong 1 ; Kumam, Poom 2
@article{JNSA_2016_9_6_a9, author = {Wongkum, Kittipong and Kumam, Poom}, title = {The stability of sextic functional equation in fuzzy modular spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {3555-3569}, publisher = {mathdoc}, volume = {9}, number = {6}, year = {2016}, doi = {10.22436/jnsa.009.06.10}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.10/} }
TY - JOUR AU - Wongkum, Kittipong AU - Kumam, Poom TI - The stability of sextic functional equation in fuzzy modular spaces JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 3555 EP - 3569 VL - 9 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.10/ DO - 10.22436/jnsa.009.06.10 LA - en ID - JNSA_2016_9_6_a9 ER -
%0 Journal Article %A Wongkum, Kittipong %A Kumam, Poom %T The stability of sextic functional equation in fuzzy modular spaces %J Journal of nonlinear sciences and its applications %D 2016 %P 3555-3569 %V 9 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.10/ %R 10.22436/jnsa.009.06.10 %G en %F JNSA_2016_9_6_a9
Wongkum, Kittipong; Kumam, Poom. The stability of sextic functional equation in fuzzy modular spaces. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 6, p. 3555-3569. doi : 10.22436/jnsa.009.06.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.10/
[1] t-Norm (\(\lambda,\mu\))-Fuzzy Quotient Near-Rings and t-Norm (\(\lambda,\mu\))-Fuzzy Quasi-Ideals, Int. Math. Forum, Volume 6 (2011), pp. 203-209
[2] On the Hyers-Ulam stability of sextic functional equations in \(\beta\)-homogeneous probabilistic modular spaces, Math. Inequal. Appl., Volume 4 (2013), pp. 1097-1114
[3] Stability of Functional Equations in Banach Algebras , Springer International, Switzerland, 2015
[4] Stability of Functional Equations in Random Normed Spaces, Springer, New York, 2013
[5] On some results in fuzzy metric spaces, Fuzzy Sets Sys., Volume 64 (1994), pp. 395-399
[6] Approximately quintic and sextic mappings on the probabilistic normed spaces, Bull. Korean Math. Soc., Volume 49 (2012), pp. 339-352
[7] On the stability of the linear functional equation , Proc. Nat. Acad. Sci. U.S.A., Volume 27 (1941), pp. 222-224
[8] Quasicontraction Mapping in modular spaces without \(\Delta_2\)-condition , Fixed Point Theory Appl., Volume 2008 (2008), pp. 1-6
[9] Some Geometric Properties and Fixed Point Theorem in Modular Spaces, in Book: Fixed Point Theorem and its Applications, J. Garcia Falset, L. Fuster and B. Sims (Editors), Yokohama Publishers, Volume 1 (2004), pp. 173-188
[10] Fixed Point Theorems for nonexpansive mappings in Modular Spaces, Arch. Math., (BRNO), Volume 40 (2004), pp. 345-353
[11] On modular spaces, Studia Math., Volume 18 (1959), pp. 49-65
[12] Modular semi-ordered spaces, Tokyo, Japan, 1959
[13] Probabilistic modular spaces , Proceedings of the 6th International ISAAC Congress, Ankara, Turkey, 2007
[14] On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., Volume 72 (1978), pp. 297-300
[15] On fuzzy modular spaces, J. Appl. Math., Volume 2013 (2013), pp. 1-8
[16] Problems in Modern Mathematics, Wiley, New York, 1960
[17] A common fixed point theorem in a fuzzy metric space, Fuzzy Sets Sys., Volume 97 (1998), pp. 395-397
[18] Some Analogies of the Banach Contraction Principle in Fuzzy Modular Spaces, Sci. World J., Volume 2013 (2013), pp. 1-4
Cité par Sources :