Voir la notice de l'article provenant de la source International Scientific Research Publications
Agarwal, Ritu 1 ; Jain, Sonal 1 ; Agarwal, R. P. 2
@article{JNSA_2016_9_6_a8, author = {Agarwal, Ritu and Jain, Sonal and Agarwal, R. P.}, title = {Analytic solution of generalized space time advection-dispersion equation with fractional {Laplace} operator}, journal = {Journal of nonlinear sciences and its applications}, pages = {3545-3554}, publisher = {mathdoc}, volume = {9}, number = {6}, year = {2016}, doi = {10.22436/jnsa.009.06.09}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.09/} }
TY - JOUR AU - Agarwal, Ritu AU - Jain, Sonal AU - Agarwal, R. P. TI - Analytic solution of generalized space time advection-dispersion equation with fractional Laplace operator JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 3545 EP - 3554 VL - 9 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.09/ DO - 10.22436/jnsa.009.06.09 LA - en ID - JNSA_2016_9_6_a8 ER -
%0 Journal Article %A Agarwal, Ritu %A Jain, Sonal %A Agarwal, R. P. %T Analytic solution of generalized space time advection-dispersion equation with fractional Laplace operator %J Journal of nonlinear sciences and its applications %D 2016 %P 3545-3554 %V 9 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.09/ %R 10.22436/jnsa.009.06.09 %G en %F JNSA_2016_9_6_a8
Agarwal, Ritu; Jain, Sonal; Agarwal, R. P. Analytic solution of generalized space time advection-dispersion equation with fractional Laplace operator. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 6, p. 3545-3554. doi : 10.22436/jnsa.009.06.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.09/
[1] On quadratic fractional generalized solid bi-criterion transportation problem, J. Appl. Math. Comput., Volume 10 (2002), pp. 131-144
[2] Application of a fractional advection-dispersion equation, Water Resources Research, Volume 36 (2000), pp. 1403-1412
[3] Levy flights in external force fields: from model to equations, Chem. Phys., Volume 284 (2002), pp. 409-421
[4] Elasticita e dissipazione, Zani-Chelli, Bologana, 1969
[5] Integral Transforms and their Applications, CRC Press, Boca Raton, 1995
[6] Continuation theorem of fractional order evolutionary integral equations, Korean J. Comput. Appl. Math., Volume 9 (2002), pp. 525-533
[7] Solution of reaction-diffusion equations in terms of the H-function, Bull. Astro. Soc. India., Volume 35 (2007), pp. 681-689
[8] Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000
[9] The Fundamental Solution of the space-time fractional advection-dispersion equation, J. Appl. Math. Comput., Volume 18 (2005), pp. 339-350
[10] Groundwater Transport: Handbook of Mathematical Models, American Geophysical Union, Michigan, 1984
[11] Numerical solution of the space fractional Fokker-Plank Equation, J. Comp. Appl. Math., Volume 166 (2004), pp. 209-319
[12] An unstructured mesh finite volume method for modelling saltwater intrusion into coatal aquifer, Korean J. Comput. Appl. Math., Volume 9 (2002), pp. 391-407
[13] A two-dimensional finite volume method for transient simulation of time scale and density-dependent transport in heterogeneous aquifer systems, Korean J. Comput. Appl. Math., Volume 11 (2003), pp. 215-241
[14] Fractals and Fractional Calculus in Continuum Mechanics Fraction(A. Carpinteri, F. Mainardi, Eds.) , chapter: fractional calculus, 291-348, Springer, Wien, 1997
[15] The H-function: Theory and Applications, Springer, New York, 2010
[16] Multidimensional advection and fractional dispersion, Phys. Rev. E., Volume 59 (1999), pp. 5026-5028
[17] An analytic solution for the space-time fractional advection-dispersion equation using the optimal homotopy asymptotic method, Comput. Phys. Commun., Volume 183 (2012), pp. 2098-2106
[18] Fractional Integrals and derivatives-Theory and applications, CRC Press, Linghorne, 1993
[19] Solution of the space-time fractional Schrödinger equation equation occuring in quantum mechanics, Fract. Calc. Appl. Anal., Volume 13 (2010), pp. 177-190
[20] Eulerian derivation of the factional adverction- dispersion equation, J. Contam. Hydrol., Volume 48 (2001), pp. 69-88
[21] Fourier Transform, MacGraw-Hill, New York, 1951
[22] ber den Fundamentalsatz in der Teorie der Funktionen Ea(x), (German), Acta Math., Volume 29 (1905), pp. 191-201
Cité par Sources :