Some common coupled fixed point results in two S-metric spaces and applications to integral equations
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 6, p. 3527-3544.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The purpose of this paper is to prove some new coupled common fixed point theorems for mappings defined on a set equipped with two S-metrics. We also provide illustrative examples in support of our new results. Meantime, we give an existence and uniqueness theorem of solution for a class of nonlinear integral equations by using the obtained result.
DOI : 10.22436/jnsa.009.06.08
Classification : 47H10, 54H25
Keywords: S-metric space, contractive mappings, coupled coincidence point, coupled common fixed point, mixed g-monotone property.

Liu, Liya 1 ; Gu, Feng 1

1 Institute of Applied Mathematics and Department of Mathematics, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
@article{JNSA_2016_9_6_a7,
     author = {Liu, Liya and Gu, Feng},
     title = {Some common coupled fixed point results in two {S-metric} spaces and applications to integral equations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {3527-3544},
     publisher = {mathdoc},
     volume = {9},
     number = {6},
     year = {2016},
     doi = {10.22436/jnsa.009.06.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.08/}
}
TY  - JOUR
AU  - Liu, Liya
AU  - Gu, Feng
TI  - Some common coupled fixed point results in two S-metric spaces and applications to integral equations
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 3527
EP  - 3544
VL  - 9
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.08/
DO  - 10.22436/jnsa.009.06.08
LA  - en
ID  - JNSA_2016_9_6_a7
ER  - 
%0 Journal Article
%A Liu, Liya
%A Gu, Feng
%T Some common coupled fixed point results in two S-metric spaces and applications to integral equations
%J Journal of nonlinear sciences and its applications
%D 2016
%P 3527-3544
%V 9
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.08/
%R 10.22436/jnsa.009.06.08
%G en
%F JNSA_2016_9_6_a7
Liu, Liya; Gu, Feng. Some common coupled fixed point results in two S-metric spaces and applications to integral equations. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 6, p. 3527-3544. doi : 10.22436/jnsa.009.06.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.08/

[1] Afra, J. M. Fixed point type theorem in S-metric spaces, Middle-East J. Sci. Res., Volume 22 (2014), pp. 864-869

[2] J. M. Afra Fixed point type theorem for weak contraction in S-metric spaces, Int. J. Res. Rev. Appl. Sci., Volume 22 (2015), pp. 11-14

[3] Afra, J. M. Double contraction in S-metric spaces , Int. J. Math. Anal., Volume 9 (2015), pp. 117-125

[4] Bhaskar, T. G.; Lakshmikantham, V. Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., Volume 65 (2006), pp. 1379-1393

[5] Chouhan, P.; Malviya, N. A common unique fixed point theorem for expansive type mappings in S-metric spaces, Int. Math. Forum, Volume 8 (2013), pp. 1287-1293

[6] B. C. Dhage Generalized metric spaces and mappings with fixed point , Bull. Calcutta Math. Soc., Volume 84 (1992), pp. 329-336

[7] Dung, N. V. On coupled common fixed points for mixed weakly monotone maps in partially ordered S-metric spaces, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-17

[8] Dung, N. V.; Hieu, N. T.; Radojević, S. Fixed point theorems for g-monotone maps on partially ordered S-metric spaces, Filomat, Volume 28 (2014), pp. 1885-1898

[9] Gu, F.; Yang, Z. Some new common fixed point results for three pairs of mappings in generalized metric spaces, Fixed point Theory Appl., Volume 2013 (2013), pp. 1-21

[10] Gupta, V.; Deep, R. Some coupled fixed point theorems in partially ordered S-metric spaces, Miskolc Math. Notes, Volume 16 (2015), pp. 181-194

[11] Hieu, N. T.; Ly, N. T. Thanh; Dung, N. V. A generalization of Ćirić quasi-contractions for maps on S-metric spaces, Thai J. Math., Volume 13 (2015), pp. 369-380

[12] Kim, J. K.; Sedghi, S.; N. Shobkolaei Common fixed point theorems for the R-weakly commuting mappings in S-metric spaces, J. Comput. Anal. Appl., Volume 19 (2015), pp. 751-759

[13] Lakshmikantham, V.; Ćirić, L. Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal., Volume 70 (2009), pp. 4341-4349

[14] Mustafa, Z.; Sims, B. A new approach to generalized metric spaces, J. Nonlinear Convex Anal., Volume 7 (2006), pp. 289-297

[15] Rahman, M. U.; Sarwar, M.; Rahman, M. U. Fixed point results of Altman integral type mappings in S-metric spaces, Int. J. Anal. Appl., Volume 10 (2016), pp. 58-63

[16] Raj, H.; Hooda, N. Coupled fixed point theorems S-metric spaces with mixed g-monotone property, Int. J. Emerging Trends Eng. Dev., Volume 4 (2014), pp. 68-81

[17] Raj, H.; Hooda, N. Coupled coincidence fixed point theorems in S-metric spaces, IOSR J. Math., Volume 10 (2014), pp. 59-64

[18] Sedghi, S.; Dung, N. V. Fixed point theorems on S-metric spaces, Mat. Vesnik, Volume 66 (2014), pp. 113-124

[19] Sedghi, S.; Rao, K. P. R.; Shobe, N. Common fixed point theorems for six weakly compatible mappings in D*-metric spaces, Int. J. Math. Sci., Volume 6 (2007), pp. 225-237

[20] Sedghi, S.; Shobe, N.; Aliouche, A. A generalization of fixed point theorems in S-metric spaces , Mat. Vesnik, Volume 64 (2012), pp. 258-266

Cité par Sources :