Generalized k-Mittag-Leffler function and its composition with pathway integral operators
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 6, p. 3519-3526.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Our purpose in this paper is to consider a more generalized form of the Mittag-Leffler function. For this newly defined function, we obtain certain composition formulas with pathway fractional integral operators. We also point out some important special cases of the main results.
DOI : 10.22436/jnsa.009.06.07
Classification : 33E12, 05C38, 26A33
Keywords: Mittag-Leffler functions, pathway integral operator.

Nisar, K. S. 1 ; Purohit, S. D. 2 ; Abouzaid, M. S. 3 ; Al Qurashi, M. 4 ; Baleanu, D. 5

1 Department of Mathematics, College of Arts and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawaser, Saudi Arabia
2 Department of HEAS (Mathematics), Rajasthan Technical University, Kota 324010, Rajasthan, India
3 Department of Mathematics, Faculty of Science, Kafrelshiekh University, Egypt
4 Department of Mathematics, King Saud University, P. O. Box 22452, Riyadh 11495, Saudi Arabia
5 Department of Mathematics, Cankaya University, Balgat 06530, Ankara, Turkey;Institute of Space Sciences, Magurele-Bucharest, Romania
@article{JNSA_2016_9_6_a6,
     author = {Nisar, K. S. and Purohit, S. D. and Abouzaid, M. S. and Al Qurashi, M. and Baleanu, D.},
     title = {Generalized {k-Mittag-Leffler} function and its composition with pathway integral operators},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {3519-3526},
     publisher = {mathdoc},
     volume = {9},
     number = {6},
     year = {2016},
     doi = {10.22436/jnsa.009.06.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.07/}
}
TY  - JOUR
AU  - Nisar, K. S.
AU  - Purohit, S. D.
AU  - Abouzaid, M. S.
AU  - Al Qurashi, M.
AU  - Baleanu, D.
TI  - Generalized k-Mittag-Leffler function and its composition with pathway integral operators
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 3519
EP  - 3526
VL  - 9
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.07/
DO  - 10.22436/jnsa.009.06.07
LA  - en
ID  - JNSA_2016_9_6_a6
ER  - 
%0 Journal Article
%A Nisar, K. S.
%A Purohit, S. D.
%A Abouzaid, M. S.
%A Al Qurashi, M.
%A Baleanu, D.
%T Generalized k-Mittag-Leffler function and its composition with pathway integral operators
%J Journal of nonlinear sciences and its applications
%D 2016
%P 3519-3526
%V 9
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.07/
%R 10.22436/jnsa.009.06.07
%G en
%F JNSA_2016_9_6_a6
Nisar, K. S.; Purohit, S. D.; Abouzaid, M. S.; Al Qurashi, M.; Baleanu, D. Generalized k-Mittag-Leffler function and its composition with pathway integral operators. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 6, p. 3519-3526. doi : 10.22436/jnsa.009.06.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.07/

[1] Agarwal, P.; Purohit, S. D. The unified pathway fractional integral formulae , J. Fract. Calc. Appl., Volume 4 (2013), pp. 1-8

[2] Baleanu, D.; Agarwal, P. A composition formula of the pathway integral transform operator, Note Mat., Volume 34 (2014), pp. 145-155

[3] Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J. J. Fractional Calculus Models and Numerical Methods , World Sci., Volume 3 (2012), pp. 10-16

[4] Dorrego, G. A.; R. A. Cerutti The k-Mittag-Leffer function, Int. J. Contemp. Math. Sci., Volume 7 (2012), pp. 705-716

[5] K. S. Gehlot The Generalized k-Mittag-Leffer function, Int. J. Contemp. Math. Sci., Volume 7 (2012), pp. 2213-2219

[6] Khan, M. A.; S. Ahmed On some properties of the generalized Mittag-Leffer function, Springer Plus, Volume 2 (2013), pp. 1-9

[7] Mathai, A. M. A pathway to matrix-variate gamma and normal densities, Linear Algebra Appl., Volume 396 (2005), pp. 317-328

[8] Mathai, A. M.; Haubold, H. J. Pathway model, superstatistics, Tsallis statistics and a generalize measure of entropy, Phys. A, Volume 375 (2007), pp. 110-122

[9] Mathai, A. M.; H. J. Haubold On generalized distributions and path-ways, Phys. Lett. A, Volume 372 (2008), pp. 2109-2113

[10] G. M. Mittag-Leffer Sur la nouvelle fonction \(E_\alpha(x)\) , CR Acad. Sci. Paris, Volume 137 (1903), pp. 554-558

[11] G. M. Mittag-Leffer Sur la representation analytique d'une branche uniforme d'une function monogene, Acta Math., Volume 29 (1905), pp. 101-181

[12] Nair, S. S. Pathway fractional integration operator, Fract. Calc. Appl. Anal., Volume 12 (2009), pp. 237-252

[13] Nisar, K. S.; Mondal, S. R.; Agarwal, P. Pathway fractional integral operator associated with Struve function of first kind, Adv. Stud. Contemp. Math., Volume 26 (2016), pp. 63-70

[14] Nisar, K. S.; Purohit, S. D.; Mondal, S. R. Generalized fractional kinetic equations involving generalized Struve function of the first kind, J. King Saud Univ. Sci., Volume 28 (2016), pp. 167-171

[15] Prabhakar, T. R. A singular integral equation with a generalized Mittag-Leffer function in the Kernel, Yokohama Math. J., Volume 19 (1971), pp. 7-15

[16] Podlubny, I. Fractional Differential Equations. An introduction to fractional derivatives, fractional di erential equations, to methods of their solution and some of their applications, Academic Press, San Diego, CA, 1999

[17] S. D. Purohit Solutions of fractional partial differential equations of quantum mechanics, Adv. Appl. Math. Mech., Volume 5 (2013), pp. 639-651

[18] Purohit, S. D.; Kalla, S. L. On fractional partial differential equations related to quantum mechanics, J. Phys. A, Volume 44 (2011), pp. 1-8

[19] E. D. Rainville Special Functions , The Macmillan Co., New York, 1960

[20] Ram, C.; Choudhary, P. Pathway fractional integration operator as generalized k-mittag-leffer function in its kernel, Int. J. Math. Arch., Volume 4 (2014), pp. 114-120

[21] Salim, T. O. Some properties relating to the generalized Mittag-Leffer function, Adv. Appl. Math. Anal., Volume 4 (2009), pp. 21-30

[22] Salim, T. O.; Ahmad, W. F. A generalization of integral operator associated with fractional calculus, J. Fract. Calc. Appl., Volume 3 (2012), pp. 1-13

[23] Shukla, A. K.; J. C. Prajapati On a generalization of Mittag-Leffer function and its properties, J. Math. Anal. Appl., Volume 336 (2007), pp. 797-811

[24] Srivastava, H. M.; Z. Tomovski Fractional calculus with an integral operator containing a generalized Mittag-Leffer function in the kernel, Appl. Math. Comput., Volume 211 (2009), pp. 198-210

[25] Uchaikin, V. V. Fractional Derivatives for Physicists and Engineers, Volume I, Background and Theory Volume II Applications, Nonlinear Physical Science, Springer-Verlag, Berlin-Heidelberg, 2013

[26] Wiman, A. Uber de fundamental satz in der theorie der funktionen Ea(x), Acta Math., Volume 29 (1905), pp. 191-201

Cité par Sources :