Voir la notice de l'article provenant de la source International Scientific Research Publications
Nisar, K. S. 1 ; Purohit, S. D. 2 ; Abouzaid, M. S. 3 ; Al Qurashi, M. 4 ; Baleanu, D. 5
@article{JNSA_2016_9_6_a6, author = {Nisar, K. S. and Purohit, S. D. and Abouzaid, M. S. and Al Qurashi, M. and Baleanu, D.}, title = {Generalized {k-Mittag-Leffler} function and its composition with pathway integral operators}, journal = {Journal of nonlinear sciences and its applications}, pages = {3519-3526}, publisher = {mathdoc}, volume = {9}, number = {6}, year = {2016}, doi = {10.22436/jnsa.009.06.07}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.07/} }
TY - JOUR AU - Nisar, K. S. AU - Purohit, S. D. AU - Abouzaid, M. S. AU - Al Qurashi, M. AU - Baleanu, D. TI - Generalized k-Mittag-Leffler function and its composition with pathway integral operators JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 3519 EP - 3526 VL - 9 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.07/ DO - 10.22436/jnsa.009.06.07 LA - en ID - JNSA_2016_9_6_a6 ER -
%0 Journal Article %A Nisar, K. S. %A Purohit, S. D. %A Abouzaid, M. S. %A Al Qurashi, M. %A Baleanu, D. %T Generalized k-Mittag-Leffler function and its composition with pathway integral operators %J Journal of nonlinear sciences and its applications %D 2016 %P 3519-3526 %V 9 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.07/ %R 10.22436/jnsa.009.06.07 %G en %F JNSA_2016_9_6_a6
Nisar, K. S.; Purohit, S. D.; Abouzaid, M. S.; Al Qurashi, M.; Baleanu, D. Generalized k-Mittag-Leffler function and its composition with pathway integral operators. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 6, p. 3519-3526. doi : 10.22436/jnsa.009.06.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.07/
[1] The unified pathway fractional integral formulae , J. Fract. Calc. Appl., Volume 4 (2013), pp. 1-8
[2] A composition formula of the pathway integral transform operator, Note Mat., Volume 34 (2014), pp. 145-155
[3] Fractional Calculus Models and Numerical Methods , World Sci., Volume 3 (2012), pp. 10-16
[4] The k-Mittag-Leffer function, Int. J. Contemp. Math. Sci., Volume 7 (2012), pp. 705-716
[5] The Generalized k-Mittag-Leffer function, Int. J. Contemp. Math. Sci., Volume 7 (2012), pp. 2213-2219
[6] On some properties of the generalized Mittag-Leffer function, Springer Plus, Volume 2 (2013), pp. 1-9
[7] A pathway to matrix-variate gamma and normal densities, Linear Algebra Appl., Volume 396 (2005), pp. 317-328
[8] Pathway model, superstatistics, Tsallis statistics and a generalize measure of entropy, Phys. A, Volume 375 (2007), pp. 110-122
[9] On generalized distributions and path-ways, Phys. Lett. A, Volume 372 (2008), pp. 2109-2113
[10] Sur la nouvelle fonction \(E_\alpha(x)\) , CR Acad. Sci. Paris, Volume 137 (1903), pp. 554-558
[11] Sur la representation analytique d'une branche uniforme d'une function monogene, Acta Math., Volume 29 (1905), pp. 101-181
[12] Pathway fractional integration operator, Fract. Calc. Appl. Anal., Volume 12 (2009), pp. 237-252
[13] Pathway fractional integral operator associated with Struve function of first kind, Adv. Stud. Contemp. Math., Volume 26 (2016), pp. 63-70
[14] Generalized fractional kinetic equations involving generalized Struve function of the first kind, J. King Saud Univ. Sci., Volume 28 (2016), pp. 167-171
[15] A singular integral equation with a generalized Mittag-Leffer function in the Kernel, Yokohama Math. J., Volume 19 (1971), pp. 7-15
[16] Fractional Differential Equations. An introduction to fractional derivatives, fractional di erential equations, to methods of their solution and some of their applications, Academic Press, San Diego, CA, 1999
[17] Solutions of fractional partial differential equations of quantum mechanics, Adv. Appl. Math. Mech., Volume 5 (2013), pp. 639-651
[18] On fractional partial differential equations related to quantum mechanics, J. Phys. A, Volume 44 (2011), pp. 1-8
[19] Special Functions , The Macmillan Co., New York, 1960
[20] Pathway fractional integration operator as generalized k-mittag-leffer function in its kernel, Int. J. Math. Arch., Volume 4 (2014), pp. 114-120
[21] Some properties relating to the generalized Mittag-Leffer function, Adv. Appl. Math. Anal., Volume 4 (2009), pp. 21-30
[22] A generalization of integral operator associated with fractional calculus, J. Fract. Calc. Appl., Volume 3 (2012), pp. 1-13
[23] On a generalization of Mittag-Leffer function and its properties, J. Math. Anal. Appl., Volume 336 (2007), pp. 797-811
[24] Fractional calculus with an integral operator containing a generalized Mittag-Leffer function in the kernel, Appl. Math. Comput., Volume 211 (2009), pp. 198-210
[25] Fractional Derivatives for Physicists and Engineers, Volume I, Background and Theory Volume II Applications, Nonlinear Physical Science, Springer-Verlag, Berlin-Heidelberg, 2013
[26] Uber de fundamental satz in der theorie der funktionen Ea(x), Acta Math., Volume 29 (1905), pp. 191-201
Cité par Sources :