Quantum difference Langevin equation with multi-quantum numbers q-derivative nonlocal conditions
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 6, p. 3491-3503.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In the present paper, we study a new class of boundary value problems for Langevin quantum difference equations with multi-quantum numbers q-derivative nonlocal conditions. Some new existence and uniqueness results are obtained by using standard fixed point theorems. The existence and uniqueness of solutions is established by Banach's contraction mapping principle, while the existence of solutions is derived by using Krasnoselskii's fixed point theorem and Leray-Schauder's nonlinear alternative. Examples illustrating the results are also presented.
DOI : 10.22436/jnsa.009.06.04
Classification : 34A08, 26A33
Keywords: q-calculus, nonlocal conditions, Langevin equation, existence, fixed point.

Sitho, Surang 1 ; Laoprasittichok, Sorasak 2 ; Ntouyas, Sotiris K. 3 ; Tariboon, Jessada 2

1 Department of Social and Applied Science, College of Industrial Technology, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
2 Nonlinear Dynamic Analysis Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
3 Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece;Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
@article{JNSA_2016_9_6_a3,
     author = {Sitho, Surang and Laoprasittichok, Sorasak and Ntouyas, Sotiris K. and Tariboon, Jessada},
     title = {Quantum difference {Langevin} equation with multi-quantum numbers q-derivative nonlocal conditions},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {3491-3503},
     publisher = {mathdoc},
     volume = {9},
     number = {6},
     year = {2016},
     doi = {10.22436/jnsa.009.06.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.04/}
}
TY  - JOUR
AU  - Sitho, Surang
AU  - Laoprasittichok, Sorasak
AU  - Ntouyas, Sotiris K.
AU  - Tariboon, Jessada
TI  - Quantum difference Langevin equation with multi-quantum numbers q-derivative nonlocal conditions
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 3491
EP  - 3503
VL  - 9
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.04/
DO  - 10.22436/jnsa.009.06.04
LA  - en
ID  - JNSA_2016_9_6_a3
ER  - 
%0 Journal Article
%A Sitho, Surang
%A Laoprasittichok, Sorasak
%A Ntouyas, Sotiris K.
%A Tariboon, Jessada
%T Quantum difference Langevin equation with multi-quantum numbers q-derivative nonlocal conditions
%J Journal of nonlinear sciences and its applications
%D 2016
%P 3491-3503
%V 9
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.04/
%R 10.22436/jnsa.009.06.04
%G en
%F JNSA_2016_9_6_a3
Sitho, Surang; Laoprasittichok, Sorasak; Ntouyas, Sotiris K.; Tariboon, Jessada. Quantum difference Langevin equation with multi-quantum numbers q-derivative nonlocal conditions. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 6, p. 3491-3503. doi : 10.22436/jnsa.009.06.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.04/

[1] Ahmad, B. Boundary value problems for nonlinear third-order q-difference equations, Electron. J. Diff. Equ., Volume 2011 (2011), pp. 1-7

[2] Ahmad, B.; Alsaedi, A.; Ntouyas, S. K. A study of second-order q-difference equations with boundary conditions, Adv. Difference Equ., Volume 2012 (2012), pp. 1-10

[3] Ahmad, B.; Eloe, P. A nonlocal boundary value problem for a nonlinear fractional differential equation with two indices, Comm. Appl. Nonlinear Anal., Volume 17 (2010), pp. 69-80

[4] Ahmad, B.; Nieto, J. J. Basic theory of nonlinear third-order q-difference equations and inclusions, Math. Model. Anal., Volume 18 (2013), pp. 122-135

[5] Ahmad, B.; Nieto, J. J.; Alsaedi, A.; El-Shahed, M. A study of nonlinear Langevin equation involving two fractional orders in different intervals, Nonlinear Anal. Real World Appl., Volume 13 (2012), pp. 599-606

[6] Ahmad, B.; Ntouyas, S. K. Boundary value problems for q-difference inclusions , Abstr. Appl. Anal., Volume 2011 (2011), pp. 1-15

[7] Annaby, M. H.; Mansour, Z. S. q-Fractional Calculus and Equations, Springer-Verlag, Berlin, 2012

[8] Bangerezako, G. Variational q-calculus, J. Math. Anal. Appl., Volume 289 (2004), pp. 650-665

[9] Coffey, W. T.; Kalmykov, Y. P.; Waldron, J. T. The Langevin equation. With applications to stochastic problems in physics, chemistry and electrical engineering: Second edition, World Scientific Publishing Co., Singapore, 2004

[10] Denisov, S. I.; Kantz, H.; Hänggi, P. Langevin equation with super-heavy-tailed noise, J. Phys. A, Volume 43 (2010), pp. 1-10

[11] Dobrogowska, A.; Odzijewicz, A. Second order q-difference equations solvable by factorization method, J. Comput. Appl. Math., Volume 193 (2006), pp. 319-346

[12] El-Shahed, M.; Hassan, H. A. Positive solutions of q-difference equation, Proc. Amer. Math. Soc., Volume 138 (2010), pp. 1733-1738

[13] Ferreira, R. A. C. Nontrivial solutions for fractional q-difference boundary value problems,, Electron. J. Qual. Theory Differ. Equ., Volume 2010 (2010), pp. 1-10

[14] Gasper, G.; Rahman, M. Basic hypergeometric series. With a foreword by Richard Askey. Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1990

[15] Gasper, G.; Rahman, M. Some systems of multivariable orthogonal q-Racah polynomials, Ramanujan J., Volume 13 (2007), pp. 389-405

[16] Granas, A.; Dugundji, J. Fixed Point Theory, Springer-Verlag , New York, 2003

[17] Kac, V.; Cheung, P. Quantum Calculus, Springer-Verlag, New York, 2002

[18] Lim, S. C.; Li, M.; Teo, L. P. Langevin equation with two fractional orders, Phys. Lett. A, Volume 372 (2008), pp. 6309-6320

[19] Lim, S. C.; Teo, L. P. The fractional oscillator process with two indices, J. Physics A, Volume 42 (2009), pp. 1-34

[20] Lizana, L.; Ambjörnsson, T.; Taloni, A.; Barkai, E.; Lomholt, M. A. Foundation of fractional Langevin equation: Harmonization of a many-body problem, Phys. Rev. E, Volume 81 (2010), pp. 1-8

[21] Lozinski, A.; Owens, R. G.; Phillips, T. N. The Langevin and Fokker-Planck Equations in Polymer Rheology, Handb. Numer. Anal. , Volume 16 (2011), pp. 211-303

[22] Tariboon, J.; Ntouyas, S. K.; Thaiprayoon, C. Nonlinear Langevin equation of Hadamard-Caputo type fractional derivatives with nonlocal fractional integral conditions, Adv. Math. Phys., Volume 2014 (2014), pp. 1-15

[23] Uranagase, M.; Munakata, T. Generalized Langevin equation revisited: mechanical random force and self-consistent structure, J. Phys., Volume 43 (2010), pp. 1-11

Cité par Sources :