Voir la notice de l'article provenant de la source International Scientific Research Publications
Lv, Dingyang 1 ; Zhang, Wen 2 ; Tang, Yi 1
@article{JNSA_2016_9_6_a2, author = {Lv, Dingyang and Zhang, Wen and Tang, Yi}, title = {Bifurcation analysis for a ratio-dependent predator-prey system with multiple delays}, journal = {Journal of nonlinear sciences and its applications}, pages = {3479-3490}, publisher = {mathdoc}, volume = {9}, number = {6}, year = {2016}, doi = {10.22436/jnsa.009.06.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.03/} }
TY - JOUR AU - Lv, Dingyang AU - Zhang, Wen AU - Tang, Yi TI - Bifurcation analysis for a ratio-dependent predator-prey system with multiple delays JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 3479 EP - 3490 VL - 9 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.03/ DO - 10.22436/jnsa.009.06.03 LA - en ID - JNSA_2016_9_6_a2 ER -
%0 Journal Article %A Lv, Dingyang %A Zhang, Wen %A Tang, Yi %T Bifurcation analysis for a ratio-dependent predator-prey system with multiple delays %J Journal of nonlinear sciences and its applications %D 2016 %P 3479-3490 %V 9 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.03/ %R 10.22436/jnsa.009.06.03 %G en %F JNSA_2016_9_6_a2
Lv, Dingyang; Zhang, Wen; Tang, Yi. Bifurcation analysis for a ratio-dependent predator-prey system with multiple delays. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 6, p. 3479-3490. doi : 10.22436/jnsa.009.06.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.03/
[1] The stability and Hopf bifurcation for a predator-prey system with time delay, Chaos Solitions Fractals, Volume 37 (2008), pp. 87-99
[2] Hopf bifurcation of a ratio-dependent predator-prey system with time delay, Chaos Solitions Fractals, Volume 42 (2009), pp. 1474-1484
[3] Allee effect in a discrete-time predator-prey system, Chaos Solitions Fractals, Volume 40 (2009), pp. 1956-1962
[4] Exponential synchronization of complex delayed dynamical networks via pinning periodically intermittent control, Phys. Lett. A, Volume 375 (2011), pp. 1965-1971
[5] On the existence of periodic solutions of a neutral delay model of single-species population growth, J. Math. Anal. Appl., Volume 259 (2001), pp. 8-17
[6] Population dynamic consequences of Allee effects, J. Theoret. Biol., Volume 215 (2002), pp. 39-46
[7] Allee effect in a predator-prey system, Chaos Solitions Fractals, Volume 36 (2008), pp. 334-342
[8] Theory and Applications of Hopf bifurcation, Cambridge Univ. Press, Cambridge, 1981
[9] Hopf bifurcation analysis for a delayed predator-prey system with diffusion effects, Nonlinear Anal. RWA, Volume 11 (2010), pp. 819-826
[10] Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston, 1993
[11] Periodic solutions for delay Lotka-Volterra competition systems, J. Math. Anal. Appl., Volume 246 (2000), pp. 230-244
[12] Positive periodic solutions of periodic neutral Lotka-Volterra system with distributed delays, Chaos Solitons Fractals, Volume 37 (2008), pp. 288-298
[13] Hamiltonian symmetric groups and multiple periodic solutions of differential delay equations, Nonlinear Anal., Volume 35 (1999), pp. 457-474
[14] Periodic solutions of periodic delay Lotka-Volterra equations and systems, J. Math. Anal. Appl., Volume 255 (2001), pp. 260-280
[15] On the existence and stability of a unique almost periodic sequence solution in discrete predator-prey models with time delays, Appl. Math. Model., Volume 35 (2011), pp. 5448-5459
[16] Multiple positive periodic solutions of n species delay competition systems with harvesting terms, Nonlinear Anal. RWA, Volume 12 (2011), pp. 1013-1022
[17] Positive periodic solutions for a class of higher-demensional state-dependent delay functional differential equations with feedback control , Appl. Math. Comput., Volume 159 (2004), pp. 783-795
[18] On a periodic predator-prey system with time delays on time scales, Commun. Nonlinear Sci. Numer. Simul., Volume 14 (2009), pp. 3432-3438
[19] Bifurcations for a predator-prey system with two delays, J. Math. Anal. Appl., Volume 337 (2008), pp. 466-479
[20] Bifurcations and chaos of a delayed ecological model, Chaos Solitions Fractals, Volume 33 (2007), pp. 1383-1393
[21] Stability and bifurcation analysis of a delayed predator-prey model of prey dispersal in two-patch environments, Appl. Math. Comput., Volume 216 (2010), pp. 2920-2936
[22] Hopf bifurcation and global periodic solutions in a delayed predator-prey system, Appl. Math. Comput., Volume 177 (2006), pp. 427-445
[23] Positive periodic solutions of a single species model with feedback regulation and distributed time delays, Appl. Math. Comput, Volume 153 (2004), pp. 475-484
[24] Dynamics of periodic delayed neural networks, Neural Networks, Volume 17 (2004), pp. 87-101
[25] The stability of predator-prey systems subject to the Allee effects, Theor. Population Biol., Volume 67 (2005), pp. 23-31
Cité par Sources :