Voir la notice de l'article provenant de la source International Scientific Research Publications
Ma, Huili 1 ; Wang, Jiaofeng 1
@article{JNSA_2016_9_6_a1, author = {Ma, Huili and Wang, Jiaofeng}, title = {Some {Oscillatory} {Properties} for a {Class} of {Partial} {Difference} {Equations}}, journal = {Journal of nonlinear sciences and its applications}, pages = {3473-3478}, publisher = {mathdoc}, volume = {9}, number = {6}, year = {2016}, doi = {10.22436/jnsa.009.06.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.02/} }
TY - JOUR AU - Ma, Huili AU - Wang, Jiaofeng TI - Some Oscillatory Properties for a Class of Partial Difference Equations JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 3473 EP - 3478 VL - 9 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.02/ DO - 10.22436/jnsa.009.06.02 LA - en ID - JNSA_2016_9_6_a1 ER -
%0 Journal Article %A Ma, Huili %A Wang, Jiaofeng %T Some Oscillatory Properties for a Class of Partial Difference Equations %J Journal of nonlinear sciences and its applications %D 2016 %P 3473-3478 %V 9 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.02/ %R 10.22436/jnsa.009.06.02 %G en %F JNSA_2016_9_6_a1
Ma, Huili; Wang, Jiaofeng. Some Oscillatory Properties for a Class of Partial Difference Equations. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 6, p. 3473-3478. doi : 10.22436/jnsa.009.06.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.02/
[1] Oscillation Theory for Difference and Functional Differential Equations, Kluwer Academic Publishers, Dordrecht, 2003
[2] Oscillation of partial difference equations with continuous variables, Math. Comput. Modelling, Volume 31 (2000), pp. 17-29
[3] Introduction to Combinatorics, Academic Press, New York-London, 1972
[4] Partial Difference Equations, Advances in Discrete Mathematics and Applications, Taylor and Francis, London, 2003
[5] Dual sets of envelopes and characteristic regions of quasi-polynomials, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2009
[6] Numerical Methods for Conservation Laws, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1990
[7] Partial difference equations used in the study of molecularorbits, Acta Chimica SINICA, Volume 40 (1982), pp. 688-698
[8] Models for material failure and deformation, Science, Volume 252 (1991), pp. 226-234
[9] Resistive grid image filtering: input/output analysis via the CNN framework, Fund. Theory Appl., IEEE Trans., Volume 39 (1992), pp. 531-548
[10] Finite difference schemes and partial difference equations, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1989
[11] An envelope surface method for determining oscillation of a delay 2-D discrete convection system, J. Dynam. Differential Equation, Volume 2014 (2014), pp. 1-16
[12] The oscillation and stability of delay partial difference equations, Comput. Math. Appl., Volume 45 (2003), pp. 1253-1295
[13] Oscillation of certain partial difference equations, J. Math. Anal. Appl., Volume 329 (2007), pp. 567-580
[14] Linearized oscillation theorems for certain nonlinear delay partial difference equations, Comput. Math. Appl., Volume 35 (1998), pp. 111-116
[15] Qualitative analysis of delay partial difference equations, Contemporary Mathematics and Its Applications, Hindawi Publishing Corporation, New York, 2007
Cité par Sources :