Voir la notice de l'article provenant de la source International Scientific Research Publications
Liu, Jian 1 ; Zhao, Zengqin 2
@article{JNSA_2016_9_6_a0, author = {Liu, Jian and Zhao, Zengqin}, title = {Variational approach to second--order damped {Hamiltonian} systems with impulsive effects}, journal = {Journal of nonlinear sciences and its applications}, pages = {3459-3472}, publisher = {mathdoc}, volume = {9}, number = {6}, year = {2016}, doi = {10.22436/jnsa.009.06.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.01/} }
TY - JOUR AU - Liu, Jian AU - Zhao, Zengqin TI - Variational approach to second--order damped Hamiltonian systems with impulsive effects JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 3459 EP - 3472 VL - 9 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.01/ DO - 10.22436/jnsa.009.06.01 LA - en ID - JNSA_2016_9_6_a0 ER -
%0 Journal Article %A Liu, Jian %A Zhao, Zengqin %T Variational approach to second--order damped Hamiltonian systems with impulsive effects %J Journal of nonlinear sciences and its applications %D 2016 %P 3459-3472 %V 9 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.01/ %R 10.22436/jnsa.009.06.01 %G en %F JNSA_2016_9_6_a0
Liu, Jian; Zhao, Zengqin. Variational approach to second--order damped Hamiltonian systems with impulsive effects. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 6, p. 3459-3472. doi : 10.22436/jnsa.009.06.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.01/
[1] Infinitely many periodic solutions for a second-order nonautonomous system, Nonlinear Anal., Volume 54 (2003), pp. 417-429
[2] An application of variational methods to second-order impulsive differential equation with derivative dependence, Electron. J. Differential Equations, Volume 2014 (2014), pp. 1-13
[3] Critical Points Theory and Hamiltonian Systems, Springer-Verlag, New York, 1989
[4] Variational formulation of a damped Dirichlet impulsive problem, Appl. Math. Lett., Volume 23 (2010), pp. 940-942
[5] Variational approach to impulsive differential equations, Nonlinear Anal. Real World Appl., Volume 10 (2009), pp. 680-690
[6] Minimax Methods in Critical Point Theory with Application to Differential Equations, American Mathematical Society, Providence, RI, 1986
[7] Multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive effects, Nonlinear Anal., Volume 72 (2010), pp. 4575-4586
[8] The existence and multiplicity of solutions for an impulsive differential equation with two parameters via a variational method, Nonlinear Anal., Volume 73 (2010), pp. 440-449
[9] Periodic solutions of non-autonomous second order systems, J. Math. Anal. Appl., Volume 202 (1996), pp. 465-469
[10] Periodic solutions for non-autonomous second order systems with sublinear nonlinearity, Proc. Amer. Math. Soc., Volume 126 (1998), pp. 3263-3270
[11] Existence and multiplicity of periodic solutions for nonautonomous second order systems , Nonlinear Anal., Volume 32 (1998), pp. 299-304
[12] Saddle point characterization and multiplicity of periodic solutions of non-autonomous second order systems, Nonlinear Anal., Volume 58 (2004), pp. 899-907
[13] Periodic solutions of a class of non-autonomous second order systems , J. Math. Anal. Appl., Volume 23 (1999), pp. 227-235
[14] Variational approach to some damped Dirichlet nonlinear impulsive differential equations, J. Franklin Inst., Volume 348 (2011), pp. 369-377
[15] Multiplicity of solutions for nonlinear second order impulsive differential equations with linear derivative dependence via variational methods, Commun. Nonlinear Sci. Numer. Simul., Volume 17 (2012), pp. 426-432
[16] Multiple solutions of nonlinear impulsive differential equations with Dirichlet boundary conditions via variational method, Results Math., Volume 63 (2013), pp. 611-628
[17] Existence of solutions for nonlinear impulsive differential equations with Dirichlet boundary conditions, Math. Comput. Modelling, Volume 53 (2011), pp. 1154-1161
[18] Existence of solutions for a class of second-order Hamiltonian systems with impulsive effects, Nonlinear Anal., Volume 72 (2010), pp. 1594-1603
Cité par Sources :