Variational approach to second--order damped Hamiltonian systems with impulsive effects
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 6, p. 3459-3472.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we consider the existence of second-order damped vibration Hamiltonian systems with impulsive effects. We obtain some new existence theorems of solutions by using variational methods.
DOI : 10.22436/jnsa.009.06.01
Classification : 34C25, 58E30
Keywords: Hamiltonian systems, variational method, impulsive effects, damped vibration.

Liu, Jian 1 ; Zhao, Zengqin 2

1 School of Mathematics and Quantitative Economics, Shandong University of Finance and Economics, Jinan, 250014, China
2 School of Mathematical Sciences, Qufu Normal University, Qufu, 273165, China
@article{JNSA_2016_9_6_a0,
     author = {Liu, Jian and Zhao, Zengqin},
     title = {Variational approach  to second--order damped {Hamiltonian} systems  with impulsive effects},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {3459-3472},
     publisher = {mathdoc},
     volume = {9},
     number = {6},
     year = {2016},
     doi = {10.22436/jnsa.009.06.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.01/}
}
TY  - JOUR
AU  - Liu, Jian
AU  - Zhao, Zengqin
TI  - Variational approach  to second--order damped Hamiltonian systems  with impulsive effects
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 3459
EP  - 3472
VL  - 9
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.01/
DO  - 10.22436/jnsa.009.06.01
LA  - en
ID  - JNSA_2016_9_6_a0
ER  - 
%0 Journal Article
%A Liu, Jian
%A Zhao, Zengqin
%T Variational approach  to second--order damped Hamiltonian systems  with impulsive effects
%J Journal of nonlinear sciences and its applications
%D 2016
%P 3459-3472
%V 9
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.01/
%R 10.22436/jnsa.009.06.01
%G en
%F JNSA_2016_9_6_a0
Liu, Jian; Zhao, Zengqin. Variational approach  to second--order damped Hamiltonian systems  with impulsive effects. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 6, p. 3459-3472. doi : 10.22436/jnsa.009.06.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.06.01/

[1] Faraci, F.; Livrea, R. Infinitely many periodic solutions for a second-order nonautonomous system, Nonlinear Anal., Volume 54 (2003), pp. 417-429

[2] Liu, J.; Zhao, Z. An application of variational methods to second-order impulsive differential equation with derivative dependence, Electron. J. Differential Equations, Volume 2014 (2014), pp. 1-13

[3] Mawhin, J.; Willem, M. Critical Points Theory and Hamiltonian Systems, Springer-Verlag, New York, 1989

[4] J. J. Nieto Variational formulation of a damped Dirichlet impulsive problem, Appl. Math. Lett., Volume 23 (2010), pp. 940-942

[5] Nieto, J. J.; O'Regan, D. Variational approach to impulsive differential equations, Nonlinear Anal. Real World Appl., Volume 10 (2009), pp. 680-690

[6] Rabinowitz, P. H. Minimax Methods in Critical Point Theory with Application to Differential Equations, American Mathematical Society, Providence, RI, 1986

[7] Sun, J.; Chen, H.; Nieto, J. J.; Otero-Novoa, M. Multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive effects, Nonlinear Anal., Volume 72 (2010), pp. 4575-4586

[8] Sun, J.; Chen, H.; L. Yang The existence and multiplicity of solutions for an impulsive differential equation with two parameters via a variational method, Nonlinear Anal., Volume 73 (2010), pp. 440-449

[9] Tang, C. Periodic solutions of non-autonomous second order systems, J. Math. Anal. Appl., Volume 202 (1996), pp. 465-469

[10] C. L. Tang Periodic solutions for non-autonomous second order systems with sublinear nonlinearity, Proc. Amer. Math. Soc., Volume 126 (1998), pp. 3263-3270

[11] Tang, C. L. Existence and multiplicity of periodic solutions for nonautonomous second order systems , Nonlinear Anal., Volume 32 (1998), pp. 299-304

[12] Wu, X. Saddle point characterization and multiplicity of periodic solutions of non-autonomous second order systems, Nonlinear Anal., Volume 58 (2004), pp. 899-907

[13] Wu, X. P.; C. L. Tang Periodic solutions of a class of non-autonomous second order systems , J. Math. Anal. Appl., Volume 23 (1999), pp. 227-235

[14] Xiao, J.; Nieto, J. J. Variational approach to some damped Dirichlet nonlinear impulsive differential equations, J. Franklin Inst., Volume 348 (2011), pp. 369-377

[15] Xiao, J.; Nieto, J. J.; Z. Luo Multiplicity of solutions for nonlinear second order impulsive differential equations with linear derivative dependence via variational methods, Commun. Nonlinear Sci. Numer. Simul., Volume 17 (2012), pp. 426-432

[16] D. Zhang Multiple solutions of nonlinear impulsive differential equations with Dirichlet boundary conditions via variational method, Results Math., Volume 63 (2013), pp. 611-628

[17] Zhang, D.; Dai, B. Existence of solutions for nonlinear impulsive differential equations with Dirichlet boundary conditions, Math. Comput. Modelling, Volume 53 (2011), pp. 1154-1161

[18] Zhou, J.; Y. Li Existence of solutions for a class of second-order Hamiltonian systems with impulsive effects, Nonlinear Anal., Volume 72 (2010), pp. 1594-1603

Cité par Sources :