Voir la notice de l'article provenant de la source International Scientific Research Publications
Li, Tongxing 1 ; Zada, Akbar 2 ; Faisal, Shah 2
@article{JNSA_2016_9_5_a11, author = {Li, Tongxing and Zada, Akbar and Faisal, Shah}, title = {Hyers--Ulam stability of nth order linear differential equations}, journal = {Journal of nonlinear sciences and its applications}, pages = {2070-2075}, publisher = {mathdoc}, volume = {9}, number = {5}, year = {2016}, doi = {10.22436/jnsa.009.05.12}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.12/} }
TY - JOUR AU - Li, Tongxing AU - Zada, Akbar AU - Faisal, Shah TI - Hyers--Ulam stability of nth order linear differential equations JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 2070 EP - 2075 VL - 9 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.12/ DO - 10.22436/jnsa.009.05.12 LA - en ID - JNSA_2016_9_5_a11 ER -
%0 Journal Article %A Li, Tongxing %A Zada, Akbar %A Faisal, Shah %T Hyers--Ulam stability of nth order linear differential equations %J Journal of nonlinear sciences and its applications %D 2016 %P 2070-2075 %V 9 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.12/ %R 10.22436/jnsa.009.05.12 %G en %F JNSA_2016_9_5_a11
Li, Tongxing; Zada, Akbar; Faisal, Shah. Hyers--Ulam stability of nth order linear differential equations. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 5, p. 2070-2075. doi : 10.22436/jnsa.009.05.12. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.12/
[1] On some inequalities and stability results related to the exponential function, J. Inequal. Appl., Volume 2 (1998), pp. 373-380
[2] On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, Volume 2 (1950), pp. 64-66
[3] Classes of transformations and bordering transformations, Bull. Amer. Math. Soc., Volume 57 (1951), pp. 223-237
[4] Remarks on stability of linear recurrence of higher order, Appl. Math. Lett., Volume 23 (2010), pp. 1459-1463
[5] On Ulam stability, Israel J. Math., Volume 193 (2013), pp. 109-129
[6] Invariance of Hyers-Ulam stability of linear differential equations and its applications, Adv. Difference Equ., Volume 2015 (2015), pp. 1-14
[7] Hyers-Ulam stability theorems for Pexider equations in the space of Schwartz distributions , Arch. Math., Volume 84 (2005), pp. 527-537
[8] On Hyers-Ulam stability of nonlinear differential equations , Bull. Korean Math. Soc., Volume 52 (2015), pp. 685-697
[9] Hyers-Ulam stability of linear functional differential equations, J. Math. Anal. Appl., Volume 426 (2015), pp. 1192-1200
[10] On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA, Volume 27 (1941), pp. 222-224
[11] Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett., Volume 17 (2004), pp. 1135-1140
[12] Hyers-Ulam stability of linear differential equations of first order, III, J. Math. Anal. Appl., Volume 311 (2005), pp. 139-146
[13] Hyers-Ulam stability of linear differential equations of first order, II, Appl. Math. Lett., Volume 19 (2006), pp. 854-858
[14] Hyers-Ulam stability of nonhomogeneous linear differential equations of second order, Int. J. Math. Math. Sci., Volume 2009 (2009), pp. 1-7
[15] Hyers-Ulam stability of linear differential equations of second order, Appl. Math. Lett., Volume 23 (2010), pp. 306-309
[16] A characterization of Hyers-Ulam stability of first order linear differential operators, J. Math. Anal. Appl., Volume 286 (2003), pp. 136-146
[17] Hyers stability of the linear differential equation, Rocznik Nauk.-Dydakt. Prace Mat., Volume 13 (1993), pp. 259-270
[18] Connections between Hyers and Lyapunov stability of the ordinary differential equations, Rocznik Nauk.-Dydakt. Prace Mat., Volume 14 (1997), pp. 141-146
[19] Hyers-Ulam-Rassias stability of a linear recurrence, J. Math. Anal. Appl., Volume 309 (2005), pp. 591-597
[20] Hyers-Ulam stability of the linear differential operator with nonconstant coeficients, Appl. Math. Comput., Volume 219 (2012), pp. 1562-1568
[21] On the stability of the linear mapping in Banach spaces , Proc. Amer. Math. Soc., Volume 72 (1978), pp. 297-300
[22] Laplace transform and Hyers-Ulam stability of linear differential equations, J. Math. Anal. Appl., Volume 403 (2013), pp. 244-251
[23] On the Hyers-Ulam stability of the Banach space-valued differential equation \(y' = \lambda y\) , Bull. Korean Math. Soc., Volume 39 (2002), pp. 309-315
[24] A Collection of Mathematical Problems, Interscience Publishers, New York, 1960
[25] Hyers-Ulam stability of linear differential equations of first order , Appl. Math. Lett., Volume 21 (2008), pp. 1024-1028
[26] Hyers-Ulam stability of non-autonomous systems in terms of boundedness of Cauchy problems, Appl. Math. Comput., Volume 271 (2015), pp. 512-518
[27] Theory of Functional Differential Equations, Anhui Education Press, in Chinese, 1994
[28] A First Course in Differential Equations with Modeling Applications, Brooks/Cole, USA, 2012
Cité par Sources :