Hyers--Ulam stability of nth order linear differential equations
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 5, p. 2070-2075.

Voir la notice de l'article provenant de la source International Scientific Research Publications

For nth order linear homogeneous and nonhomogeneous differential equations with nonconstant coefficients, we prove Hyers{Ulam stability by using open mapping theorem. The generalized Hyers{Ulam stability is also investigated.
DOI : 10.22436/jnsa.009.05.12
Classification : 35B35
Keywords: Hyers-Ulam stability, generalized Hyers-Ulam stability, nth order linear differential equation, open mapping theorem.

Li, Tongxing 1 ; Zada, Akbar 2 ; Faisal, Shah 2

1 School of Informatics, Linyi University, Linyi, Shandong 276005, P. R. China;LinDa Institute of Shandong Provincial Key Laboratory of Network Based Intelligent Computing, Linyi University, Linyi, Shandong 276005, P. R. China
2 Department of Mathematics, University of Peshawar, Peshawar 25000, Pakistan
@article{JNSA_2016_9_5_a11,
     author = {Li, Tongxing and Zada, Akbar and Faisal, Shah},
     title = {Hyers--Ulam stability of nth order linear differential equations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {2070-2075},
     publisher = {mathdoc},
     volume = {9},
     number = {5},
     year = {2016},
     doi = {10.22436/jnsa.009.05.12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.12/}
}
TY  - JOUR
AU  - Li, Tongxing
AU  - Zada, Akbar
AU  - Faisal, Shah
TI  - Hyers--Ulam stability of nth order linear differential equations
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 2070
EP  - 2075
VL  - 9
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.12/
DO  - 10.22436/jnsa.009.05.12
LA  - en
ID  - JNSA_2016_9_5_a11
ER  - 
%0 Journal Article
%A Li, Tongxing
%A Zada, Akbar
%A Faisal, Shah
%T Hyers--Ulam stability of nth order linear differential equations
%J Journal of nonlinear sciences and its applications
%D 2016
%P 2070-2075
%V 9
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.12/
%R 10.22436/jnsa.009.05.12
%G en
%F JNSA_2016_9_5_a11
Li, Tongxing; Zada, Akbar; Faisal, Shah. Hyers--Ulam stability of nth order linear differential equations. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 5, p. 2070-2075. doi : 10.22436/jnsa.009.05.12. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.12/

[1] Alsina, C.; R. Ger On some inequalities and stability results related to the exponential function, J. Inequal. Appl., Volume 2 (1998), pp. 373-380

[2] T. Aoki On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, Volume 2 (1950), pp. 64-66

[3] Bourgin, D. G. Classes of transformations and bordering transformations, Bull. Amer. Math. Soc., Volume 57 (1951), pp. 223-237

[4] Brzdęk, J.; Popa, D.; B. Xu Remarks on stability of linear recurrence of higher order, Appl. Math. Lett., Volume 23 (2010), pp. 1459-1463

[5] Burger, M.; Ozawa, N.; A. Thom On Ulam stability, Israel J. Math., Volume 193 (2013), pp. 109-129

[6] Choi, G.; Jung, S.-M. Invariance of Hyers-Ulam stability of linear differential equations and its applications, Adv. Difference Equ., Volume 2015 (2015), pp. 1-14

[7] Chung, J. Hyers-Ulam stability theorems for Pexider equations in the space of Schwartz distributions , Arch. Math., Volume 84 (2005), pp. 527-537

[8] Huang, J.; Jung, S.-M.; Y. Li On Hyers-Ulam stability of nonlinear differential equations , Bull. Korean Math. Soc., Volume 52 (2015), pp. 685-697

[9] Huang, J.; Li, Y. Hyers-Ulam stability of linear functional differential equations, J. Math. Anal. Appl., Volume 426 (2015), pp. 1192-1200

[10] Hyers, D. H. On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA, Volume 27 (1941), pp. 222-224

[11] S.-M. Jung Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett., Volume 17 (2004), pp. 1135-1140

[12] S.-M. Jung Hyers-Ulam stability of linear differential equations of first order, III, J. Math. Anal. Appl., Volume 311 (2005), pp. 139-146

[13] Jung, S.-M. Hyers-Ulam stability of linear differential equations of first order, II, Appl. Math. Lett., Volume 19 (2006), pp. 854-858

[14] Li, Y.; Shen, Y. Hyers-Ulam stability of nonhomogeneous linear differential equations of second order, Int. J. Math. Math. Sci., Volume 2009 (2009), pp. 1-7

[15] Li, Y.; Y. Shen Hyers-Ulam stability of linear differential equations of second order, Appl. Math. Lett., Volume 23 (2010), pp. 306-309

[16] Miura, T.; Miyajima, S.; Takahasi, S.-E. A characterization of Hyers-Ulam stability of first order linear differential operators, J. Math. Anal. Appl., Volume 286 (2003), pp. 136-146

[17] M. Ob loza Hyers stability of the linear differential equation, Rocznik Nauk.-Dydakt. Prace Mat., Volume 13 (1993), pp. 259-270

[18] M. Obloza Connections between Hyers and Lyapunov stability of the ordinary differential equations, Rocznik Nauk.-Dydakt. Prace Mat., Volume 14 (1997), pp. 141-146

[19] Popa, D. Hyers-Ulam-Rassias stability of a linear recurrence, J. Math. Anal. Appl., Volume 309 (2005), pp. 591-597

[20] Popa, D.; I.Raşa Hyers-Ulam stability of the linear differential operator with nonconstant coeficients, Appl. Math. Comput., Volume 219 (2012), pp. 1562-1568

[21] Rassias, Th. M. On the stability of the linear mapping in Banach spaces , Proc. Amer. Math. Soc., Volume 72 (1978), pp. 297-300

[22] Rezaei, H.; Jung, S.-M.; Th. M. Rassias Laplace transform and Hyers-Ulam stability of linear differential equations, J. Math. Anal. Appl., Volume 403 (2013), pp. 244-251

[23] Takahasi, S.-E.; Miura, T.; Miyajima, S. On the Hyers-Ulam stability of the Banach space-valued differential equation \(y' = \lambda y\) , Bull. Korean Math. Soc., Volume 39 (2002), pp. 309-315

[24] Ulam, S. M. A Collection of Mathematical Problems, Interscience Publishers, New York, 1960

[25] Wang, G.; Zhou, M.; Sun, L. Hyers-Ulam stability of linear differential equations of first order , Appl. Math. Lett., Volume 21 (2008), pp. 1024-1028

[26] Zada, A.; Shah, O.; Shah, R. Hyers-Ulam stability of non-autonomous systems in terms of boundedness of Cauchy problems, Appl. Math. Comput., Volume 271 (2015), pp. 512-518

[27] Z. Zheng Theory of Functional Differential Equations, Anhui Education Press, in Chinese, 1994

[28] Zill, D. G. A First Course in Differential Equations with Modeling Applications, Brooks/Cole, USA, 2012

Cité par Sources :