Voir la notice de l'article provenant de la source International Scientific Research Publications
Singh, Deepak 1 ; Joshi, Vishal 2 ; Imdad, Mohammad 3 ; Kumam, Poom 4
@article{JNSA_2016_9_5_a10, author = {Singh, Deepak and Joshi, Vishal and Imdad, Mohammad and Kumam, Poom}, title = {Unified implicit common fixed point theorems under non-negative complex valued functions satisfying the identity of indiscernible}, journal = {Journal of nonlinear sciences and its applications}, pages = {2049-2069}, publisher = {mathdoc}, volume = {9}, number = {5}, year = {2016}, doi = {10.22436/jnsa.009.05.11}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.11/} }
TY - JOUR AU - Singh, Deepak AU - Joshi, Vishal AU - Imdad, Mohammad AU - Kumam, Poom TI - Unified implicit common fixed point theorems under non-negative complex valued functions satisfying the identity of indiscernible JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 2049 EP - 2069 VL - 9 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.11/ DO - 10.22436/jnsa.009.05.11 LA - en ID - JNSA_2016_9_5_a10 ER -
%0 Journal Article %A Singh, Deepak %A Joshi, Vishal %A Imdad, Mohammad %A Kumam, Poom %T Unified implicit common fixed point theorems under non-negative complex valued functions satisfying the identity of indiscernible %J Journal of nonlinear sciences and its applications %D 2016 %P 2049-2069 %V 9 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.11/ %R 10.22436/jnsa.009.05.11 %G en %F JNSA_2016_9_5_a10
Singh, Deepak; Joshi, Vishal; Imdad, Mohammad; Kumam, Poom. Unified implicit common fixed point theorems under non-negative complex valued functions satisfying the identity of indiscernible. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 5, p. 2049-2069. doi : 10.22436/jnsa.009.05.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.11/
[1] Common fixed point results for contractive mappings in complex valued metric spaces, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-11
[2] An implicit function implies several contraction conditions, Sarajevo J. Math., Volume 4 (2008), pp. 269-285
[3] Common fixed point theorems in complex valued metric spaces, Numer. Func. Anal. Optim., Volume 32 (2011), pp. 243-253
[4] Common fixed point theorems for occasionally weakly Compatible mappings under relaxed conditions, Nonlinear Anal., Volume 73 (2010), pp. 176-182
[5] A common fixed point theorem for weakly compatible maps in complex valued metric spaces, Int. J. Math. Sci. Appl., Volume 1 (2011), pp. 1385-1389
[6] Some common fixed point results for rational type contraction mappings in complex valued metric spaces, J. Operators, Volume 2013 (2013), pp. 1-6
[7] A common fixed point theorem under contractive condition in complex valued metric spaces, Int. J. Adv. Sci. Tech. Research, Volume 6 (2012), pp. 467-475
[8] Some new common fixed point theorems in fuzzy metric spaces, Ann. Univ. Ferrara Sez. VII Sci. Mat., Volume 57 (2011), pp. 303-316
[9] A general fixed point theorem in fuzzy metric spaces via an implicit function, J. Appl. Math. Info., Volume 26 (2008), pp. 591-603
[10] Remarks on some fixed point theorems satisfying implicit relations, Rad. Mat., Volume 11 (2002), pp. 135-143
[11] Fixed point theorems for occasionally weakly compatible mappings, Fixed Point Theory, Volume 7 (2006), pp. 286-296
[12] Common fixed point theorems under rational contractions in complex valued metric spaces, J. Nonlinear Sci. Appl., Volume 7 (2014), pp. 42-50
[13] Fixed point theorems for implicit contractive mappings, Stud. Cercet. Ser. Mat. Univ. Bacau, Volume 7 (1997), pp. 127-133
[14] Some fixed point theorems for compatible mappings satisfying an implicit relation , Demonstratio Math., Volume 32 (1999), pp. 157-163
[15] A general fixed point theorem for occasionally weakly compatible mappings and application, Sci. Stud. Res. Ser. Math. Inform., Volume 22 (2012), pp. 77-91
[16] Using implicit relations to prove unified fixed point theorems in metric and 2-metric spaces, Bull. Malays. Math. Sci. Soc., Volume 33 (2010), pp. 105-120
[17] A common fixed point theorem in complex valued b-metric spaces, Bull. Math. Stat. Res., Volume 1 (2013), pp. 1-8
[18] Some common fixed point theorems on complex valued metric spaces, Comput. Math. Appl., Volume 64 (2012), pp. 1866-1874
[19] A common fixed point theorem for four self maps in complex valued and vector valued metric spaces, Int. J. Math. Arc., Volume 3 (2012), pp. 2680-2685
[20] Common fixed point theorems using property (E.A) in complex-valued metric spaces, Thai J. Math., Volume 11 (2013), pp. 347-355
Cité par Sources :