Unified implicit common fixed point theorems under non-negative complex valued functions satisfying the identity of indiscernible
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 5, p. 2049-2069.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we consider a non-negative complex valued function satisfying the identity of indiscernible and utilize the same to prove some common fixed point theorems for two pairs of non-vacuously weakly compatible mappings satisfying an implicit relation having rational terms as its co-ordinates. Some illustrative examples are also given which demonstrate the validity of the hypotheses of our results. In process, a host of previously known results in the context of complex as well as real valued metric spaces are generalized and improved.
DOI : 10.22436/jnsa.009.05.11
Classification : 54H25, 47H10
Keywords: Complex valued metric spaces, non-vacuously weakly compatible mappings, implicit relations, coincidence point, point of coincidence, fixed point.

Singh, Deepak 1 ; Joshi, Vishal 2 ; Imdad, Mohammad 3 ; Kumam, Poom 4

1 Department of Applied Sciences, NITTTR, Under Ministry of HRD, Govt. of India, Bhopal, (M.P.) 462002, India
2 Department of Applied Mathematics, Jabalpur Engineering College, Jabalpur, (M.P.), India
3 Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India
4 Department of Mathematics & Theoretical and Computational Science (TaCS) Center, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand;China Medical University, No. 91, Hsueh-Shih Road, Taichung, Taiwan
@article{JNSA_2016_9_5_a10,
     author = {Singh, Deepak and Joshi, Vishal and Imdad, Mohammad and Kumam, Poom},
     title = {Unified implicit common fixed point theorems under non-negative complex valued functions satisfying the identity of indiscernible},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {2049-2069},
     publisher = {mathdoc},
     volume = {9},
     number = {5},
     year = {2016},
     doi = {10.22436/jnsa.009.05.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.11/}
}
TY  - JOUR
AU  - Singh, Deepak
AU  - Joshi, Vishal
AU  - Imdad, Mohammad
AU  - Kumam, Poom
TI  - Unified implicit common fixed point theorems under non-negative complex valued functions satisfying the identity of indiscernible
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 2049
EP  - 2069
VL  - 9
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.11/
DO  - 10.22436/jnsa.009.05.11
LA  - en
ID  - JNSA_2016_9_5_a10
ER  - 
%0 Journal Article
%A Singh, Deepak
%A Joshi, Vishal
%A Imdad, Mohammad
%A Kumam, Poom
%T Unified implicit common fixed point theorems under non-negative complex valued functions satisfying the identity of indiscernible
%J Journal of nonlinear sciences and its applications
%D 2016
%P 2049-2069
%V 9
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.11/
%R 10.22436/jnsa.009.05.11
%G en
%F JNSA_2016_9_5_a10
Singh, Deepak; Joshi, Vishal; Imdad, Mohammad; Kumam, Poom. Unified implicit common fixed point theorems under non-negative complex valued functions satisfying the identity of indiscernible. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 5, p. 2049-2069. doi : 10.22436/jnsa.009.05.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.11/

[1] Ahmed, J.; Azam, A.; Saejung, S. Common fixed point results for contractive mappings in complex valued metric spaces, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-11

[2] Ali, A.; M. Imdad An implicit function implies several contraction conditions, Sarajevo J. Math., Volume 4 (2008), pp. 269-285

[3] Azam, A.; Fisher, B.; Khan, M. Common fixed point theorems in complex valued metric spaces, Numer. Func. Anal. Optim., Volume 32 (2011), pp. 243-253

[4] Bhatt, A.; Chandra, H.; D. R. Sahu Common fixed point theorems for occasionally weakly Compatible mappings under relaxed conditions, Nonlinear Anal., Volume 73 (2010), pp. 176-182

[5] Bhatt, S.; Chaukiyal, S.; Dimri, R. C. A common fixed point theorem for weakly compatible maps in complex valued metric spaces, Int. J. Math. Sci. Appl., Volume 1 (2011), pp. 1385-1389

[6] Chandok, S.; D. Kumar Some common fixed point results for rational type contraction mappings in complex valued metric spaces, J. Operators, Volume 2013 (2013), pp. 1-6

[7] Datta, S. K.; Ali, S. A common fixed point theorem under contractive condition in complex valued metric spaces, Int. J. Adv. Sci. Tech. Research, Volume 6 (2012), pp. 467-475

[8] Gopal, D.; Imdad, M. Some new common fixed point theorems in fuzzy metric spaces, Ann. Univ. Ferrara Sez. VII Sci. Mat., Volume 57 (2011), pp. 303-316

[9] Imdad, M.; J. Ali A general fixed point theorem in fuzzy metric spaces via an implicit function, J. Appl. Math. Info., Volume 26 (2008), pp. 591-603

[10] Imdad, M.; Kumar, S.; M. S. Khan Remarks on some fixed point theorems satisfying implicit relations, Rad. Mat., Volume 11 (2002), pp. 135-143

[11] Jungck, G.; B. E. Rhoades Fixed point theorems for occasionally weakly compatible mappings, Fixed Point Theory, Volume 7 (2006), pp. 286-296

[12] Nashine, H. K.; Imdad, M.; Hasan, H. Common fixed point theorems under rational contractions in complex valued metric spaces, J. Nonlinear Sci. Appl., Volume 7 (2014), pp. 42-50

[13] Popa, V. Fixed point theorems for implicit contractive mappings, Stud. Cercet. Ser. Mat. Univ. Bacau, Volume 7 (1997), pp. 127-133

[14] Popa, V. Some fixed point theorems for compatible mappings satisfying an implicit relation , Demonstratio Math., Volume 32 (1999), pp. 157-163

[15] Popa, V. A general fixed point theorem for occasionally weakly compatible mappings and application, Sci. Stud. Res. Ser. Math. Inform., Volume 22 (2012), pp. 77-91

[16] Popa, V.; Imdad, M.; Ali, J. Using implicit relations to prove unified fixed point theorems in metric and 2-metric spaces, Bull. Malays. Math. Sci. Soc., Volume 33 (2010), pp. 105-120

[17] Rao, K. P. R.; Rangaswamy, P.; Prasad, J. R. A common fixed point theorem in complex valued b-metric spaces, Bull. Math. Stat. Res., Volume 1 (2013), pp. 1-8

[18] Rouzkard, F.; Imdad, M. Some common fixed point theorems on complex valued metric spaces, Comput. Math. Appl., Volume 64 (2012), pp. 1866-1874

[19] Sastry, K. P. R.; Naidu, G. A.; Bekeshie, T.; Rahamatulla, M. A. A common fixed point theorem for four self maps in complex valued and vector valued metric spaces, Int. J. Math. Arc., Volume 3 (2012), pp. 2680-2685

[20] Verma, R. K.; Pathak, H. K. Common fixed point theorems using property (E.A) in complex-valued metric spaces, Thai J. Math., Volume 11 (2013), pp. 347-355

Cité par Sources :