Sharp bounds for Neuman means with applications
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 5, p. 2031-2038.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In the article, we present the sharp bounds for the Neuman mean NAG(a; b), $N_{GA}(a; b), N_{QA}(a; b)$ and $N_{AQ}(a; b)$ in terms of the convex combinations of the arithmetic and one-parameter harmonic and contraharmonic means. As applications, we find several sharp inequalities for the first Seiffert, second Seiffert, Neuman-Sándor and logarithmic means.
DOI : 10.22436/jnsa.009.05.09
Classification : 26E60
Keywords: Neuman mean, Schwab-Borchardt mean, harmonic mean, geometric mean, arithmetic mean, quadratic mean, contra-harmonic mean.

Xia, Fang-Li 1 ; Qian, Wei-Mao 2 ; Chen, Shu-Bo 1 ; Chu, Yu-Ming 3

1 School of Mathematics and Computation Sciences, Hunan City University, Yiyang 413000, China
2 School of Distance Education, Huzhou Broadcast and TV University, Huzhou 313000, China
3 School of Mathematics and Computation Sciences, Hunan City University, Yiyang 413000,, China
@article{JNSA_2016_9_5_a8,
     author = {Xia, Fang-Li and Qian, Wei-Mao and Chen, Shu-Bo and Chu, Yu-Ming},
     title = {Sharp bounds for {Neuman} means with applications},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {2031-2038},
     publisher = {mathdoc},
     volume = {9},
     number = {5},
     year = {2016},
     doi = {10.22436/jnsa.009.05.09},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.09/}
}
TY  - JOUR
AU  - Xia, Fang-Li
AU  - Qian, Wei-Mao
AU  - Chen, Shu-Bo
AU  - Chu, Yu-Ming
TI  - Sharp bounds for Neuman means with applications
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 2031
EP  - 2038
VL  - 9
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.09/
DO  - 10.22436/jnsa.009.05.09
LA  - en
ID  - JNSA_2016_9_5_a8
ER  - 
%0 Journal Article
%A Xia, Fang-Li
%A Qian, Wei-Mao
%A Chen, Shu-Bo
%A Chu, Yu-Ming
%T Sharp bounds for Neuman means with applications
%J Journal of nonlinear sciences and its applications
%D 2016
%P 2031-2038
%V 9
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.09/
%R 10.22436/jnsa.009.05.09
%G en
%F JNSA_2016_9_5_a8
Xia, Fang-Li; Qian, Wei-Mao; Chen, Shu-Bo; Chu, Yu-Ming. Sharp bounds for Neuman means with applications. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 5, p. 2031-2038. doi : 10.22436/jnsa.009.05.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.09/

[1] Anderson, G. D.; Qiu, S. L.; Vamanamurthy, M. K.; Vuorinen, M. Generalized elliptic integrals and modular equations, Pacific J. Math., Volume 192 (2000), pp. 1-37

[2] Biernacki, M.; Krzyz, J. On the monotonity of certain functionals in the theory of analytic functions, Ann. Univ. Mariae Curie-Sklodowska. Sect. A, Volume 9 (1955), pp. 135-147

[3] Neuman, E. A one-parameter family of bivariate means, J. Math. Inequal., Volume 7 (2013), pp. 399-412

[4] Neuman, E. Optimal bounds for certain bivariate means, Probl. Anal. Issues Anal., Volume 3 (2014), pp. 35-43

[5] Neuman, E. On a new bivariate mean, Aequationes Math., Volume 88 (2014), pp. 277-289

[6] Neuman, E.; Sándor, J. On the Schwab-Borchardt mean, Math. Pannon., Volume 14 (2003), pp. 253-266

[7] Neuman, E.; Sándor, J. On the Schwab-Borchardt mean II, Math. Pannon., Volume 17 (2006), pp. 49-59

[8] Pólya, G.; G. Szegő Problems and Theorems in Analysis I, Springer-Verlag, Berlin, 1998

[9] Qian, W. M.; Shao, Z. H.; Y. M. Chu Sharp inequalities involving Neuman means of the second kind, J. Math. Inequal., Volume 9 (2015), pp. 531-540

[10] Zhang, Y.; Chu, Y. M.; Jiang, Y. L. Sharp geometric mean bounds for Neuman means, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-6

Cité par Sources :