Voir la notice de l'article provenant de la source International Scientific Research Publications
Xia, Fang-Li 1 ; Qian, Wei-Mao 2 ; Chen, Shu-Bo 1 ; Chu, Yu-Ming 3
@article{JNSA_2016_9_5_a8, author = {Xia, Fang-Li and Qian, Wei-Mao and Chen, Shu-Bo and Chu, Yu-Ming}, title = {Sharp bounds for {Neuman} means with applications}, journal = {Journal of nonlinear sciences and its applications}, pages = {2031-2038}, publisher = {mathdoc}, volume = {9}, number = {5}, year = {2016}, doi = {10.22436/jnsa.009.05.09}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.09/} }
TY - JOUR AU - Xia, Fang-Li AU - Qian, Wei-Mao AU - Chen, Shu-Bo AU - Chu, Yu-Ming TI - Sharp bounds for Neuman means with applications JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 2031 EP - 2038 VL - 9 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.09/ DO - 10.22436/jnsa.009.05.09 LA - en ID - JNSA_2016_9_5_a8 ER -
%0 Journal Article %A Xia, Fang-Li %A Qian, Wei-Mao %A Chen, Shu-Bo %A Chu, Yu-Ming %T Sharp bounds for Neuman means with applications %J Journal of nonlinear sciences and its applications %D 2016 %P 2031-2038 %V 9 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.09/ %R 10.22436/jnsa.009.05.09 %G en %F JNSA_2016_9_5_a8
Xia, Fang-Li; Qian, Wei-Mao; Chen, Shu-Bo; Chu, Yu-Ming. Sharp bounds for Neuman means with applications. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 5, p. 2031-2038. doi : 10.22436/jnsa.009.05.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.09/
[1] Generalized elliptic integrals and modular equations, Pacific J. Math., Volume 192 (2000), pp. 1-37
[2] On the monotonity of certain functionals in the theory of analytic functions, Ann. Univ. Mariae Curie-Sklodowska. Sect. A, Volume 9 (1955), pp. 135-147
[3] A one-parameter family of bivariate means, J. Math. Inequal., Volume 7 (2013), pp. 399-412
[4] Optimal bounds for certain bivariate means, Probl. Anal. Issues Anal., Volume 3 (2014), pp. 35-43
[5] On a new bivariate mean, Aequationes Math., Volume 88 (2014), pp. 277-289
[6] On the Schwab-Borchardt mean, Math. Pannon., Volume 14 (2003), pp. 253-266
[7] On the Schwab-Borchardt mean II, Math. Pannon., Volume 17 (2006), pp. 49-59
[8] Problems and Theorems in Analysis I, Springer-Verlag, Berlin, 1998
[9] Sharp inequalities involving Neuman means of the second kind, J. Math. Inequal., Volume 9 (2015), pp. 531-540
[10] Sharp geometric mean bounds for Neuman means, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-6
Cité par Sources :