Voir la notice de l'article provenant de la source International Scientific Research Publications
Petrişor, Camelia 1
@article{JNSA_2016_9_5_a7, author = {Petri\c{s}or, Camelia}, title = {Stabilization of a nonlinear control system on the {Lie} group \( {SO(3)\times} {\mathbb{R}^3\times} {\mathbb{R}^3} \)}, journal = {Journal of nonlinear sciences and its applications}, pages = {2019-2030}, publisher = {mathdoc}, volume = {9}, number = {5}, year = {2016}, doi = {10.22436/jnsa.009.05.08}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.08/} }
TY - JOUR AU - Petrişor, Camelia TI - Stabilization of a nonlinear control system on the Lie group \( SO(3)\times \mathbb{R}^3\times \mathbb{R}^3 \) JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 2019 EP - 2030 VL - 9 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.08/ DO - 10.22436/jnsa.009.05.08 LA - en ID - JNSA_2016_9_5_a7 ER -
%0 Journal Article %A Petrişor, Camelia %T Stabilization of a nonlinear control system on the Lie group \( SO(3)\times \mathbb{R}^3\times \mathbb{R}^3 \) %J Journal of nonlinear sciences and its applications %D 2016 %P 2019-2030 %V 9 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.08/ %R 10.22436/jnsa.009.05.08 %G en %F JNSA_2016_9_5_a7
Petrişor, Camelia. Stabilization of a nonlinear control system on the Lie group \( SO(3)\times \mathbb{R}^3\times \mathbb{R}^3 \). Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 5, p. 2019-2030. doi : 10.22436/jnsa.009.05.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.08/
[1] Stabilization of Rigid Body Dynamics by Internal and External Torques, Automatica J., Volume 28 (1992), pp. 745-756
[2] Some New Remarks about the Dynamics of an Automobile with Two Trailers, J. Appl. Math., Volume 2014 (2014), pp. 1-6
[3] A Drift-Free Left Invariant Control System on the Lie Group \(SO(3)\times \mathbb{R}^3\times \mathbb{R}^3 \), Math. Probl. Eng., Volume 2015 (2015), pp. 1-9
[4] Geometrical aspects of the ball-plate problem, Balkan J. Geom. Appl., Volume 16 (2011), pp. 114-121
[5] Stability Problems for Chua System with One Linear Control , J. Appl. Math., Volume 2013 (2013), pp. 1-5
[6] On the Maxwell-Bloch equations with one control, C. R. Acad. Sci. Paris, Sér. I Math., Volume 318 (1994), pp. 679-683
[7] On an Extension of the 3-Dimensional Toda Lattice, Differential geometry and applications (Brno, 1995), 455-462, Masaryk Univ., Brno, 1996
[8] On the Product of Semi-Operators, Proc. Amer. Math. Soc., Volume 10 (1959), pp. 545-551
Cité par Sources :