Voir la notice de l'article provenant de la source International Scientific Research Publications
Zhan, Qingyi 1
@article{JNSA_2016_9_5_a6, author = {Zhan, Qingyi}, title = {Shadowing orbits of stochastic differential equations}, journal = {Journal of nonlinear sciences and its applications}, pages = {2006-2018}, publisher = {mathdoc}, volume = {9}, number = {5}, year = {2016}, doi = {10.22436/jnsa.009.05.07}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.07/} }
TY - JOUR AU - Zhan, Qingyi TI - Shadowing orbits of stochastic differential equations JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 2006 EP - 2018 VL - 9 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.07/ DO - 10.22436/jnsa.009.05.07 LA - en ID - JNSA_2016_9_5_a6 ER -
%0 Journal Article %A Zhan, Qingyi %T Shadowing orbits of stochastic differential equations %J Journal of nonlinear sciences and its applications %D 2016 %P 2006-2018 %V 9 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.07/ %R 10.22436/jnsa.009.05.07 %G en %F JNSA_2016_9_5_a6
Zhan, Qingyi. Shadowing orbits of stochastic differential equations. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 5, p. 2006-2018. doi : 10.22436/jnsa.009.05.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.07/
[1] Random Dynamical Systems, Springer-Verlag, Berlin, 2003
[2] Lyapunov's second method for random dynamical systems, J. Differential Equations, Volume 177 (2001), pp. 235-265
[3] An introduction to stochastic dynamics, Cambridge University Press, New York, 2015
[4] Shadowing properties of random hyperbolic sets , Internat. J. Math., Volume 23 (2012), pp. 1-10
[5] Matrix computations , Johns Hopkins University Press, Baltimore, 2013
[6] Midpoint rule for a linear stochastic oscillator with additive noise , Neural Parallel Sci. Comput., Volume 14 (2006), pp. 1-12
[7] Functional analysis, Pergamon Press, Oxford, 1982
[8] Attractors and bifurcations of stochastic Lorenz system, in ''Technical Report 389'',Institut fur Dynamische Systeme, Universitat Bremen, 1996
[9] Conceptual analysis and random attractor for dissipative random dynamical systems, Acta Math. Sci. Ser. B Engl. Ed., Volume 28 (2008), pp. 253-268
[10] Numerical integration of stochastic differential equations, Kluwer Academic Publishers, Dordrecht, 1995
[11] Shadowing in dynamical systems, Theory and applications, Kluwer Academic Publishers, Dordrecht, 2000
[12] An interpretation of stochastic differential equations as ordinary differential equations which depend on the sample point , Bull. Amer. Math. Soc., Volume 83 (1977), pp. 296-298
[13] Maximum error bound of a linearized difference scheme for coupled nonlinear Schrodinger equation, J. Comput. Appl. Math., Volume 235 (2011), pp. 4237-4250
[14] Uniqueness of limit cycles for a class of cubic system with an invariant straight line , Nonlinear Anal., Volume 70 (2009), pp. 4217-4225
Cité par Sources :