Shadowing orbits of stochastic differential equations
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 5, p. 2006-2018.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This paper is devoted to the existence of a true solution near a numerical approximate solution of stochastic differential equations. We prove a general shadowing theorem for finite time of stochastic differential equations under some suitable conditions and provide an estimate of shadowing distance by computable quantities. The practical use of this theorem is demonstrated in the numerical simulations of chaotic orbits of the stochastic Lorenz system.
DOI : 10.22436/jnsa.009.05.07
Classification : 65C20, 65P20, 37H10, 37C50
Keywords: Stochastic differential equations, random dynamical system, shadowing, multiplicative ergodic theorem, stochastic Lorenz system.

Zhan, Qingyi 1

1 College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
@article{JNSA_2016_9_5_a6,
     author = {Zhan, Qingyi},
     title = {Shadowing orbits of stochastic differential equations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {2006-2018},
     publisher = {mathdoc},
     volume = {9},
     number = {5},
     year = {2016},
     doi = {10.22436/jnsa.009.05.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.07/}
}
TY  - JOUR
AU  - Zhan, Qingyi
TI  - Shadowing orbits of stochastic differential equations
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 2006
EP  - 2018
VL  - 9
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.07/
DO  - 10.22436/jnsa.009.05.07
LA  - en
ID  - JNSA_2016_9_5_a6
ER  - 
%0 Journal Article
%A Zhan, Qingyi
%T Shadowing orbits of stochastic differential equations
%J Journal of nonlinear sciences and its applications
%D 2016
%P 2006-2018
%V 9
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.07/
%R 10.22436/jnsa.009.05.07
%G en
%F JNSA_2016_9_5_a6
Zhan, Qingyi. Shadowing orbits of stochastic differential equations. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 5, p. 2006-2018. doi : 10.22436/jnsa.009.05.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.07/

[1] Arnold, L. Random Dynamical Systems, Springer-Verlag, Berlin, 2003

[2] Arnold, L.; B. Schmalfuss Lyapunov's second method for random dynamical systems, J. Differential Equations, Volume 177 (2001), pp. 235-265

[3] J. Duan An introduction to stochastic dynamics, Cambridge University Press, New York, 2015

[4] Fakhari, A.; A. Golmakani Shadowing properties of random hyperbolic sets , Internat. J. Math., Volume 23 (2012), pp. 1-10

[5] Golub, G. H.; C. F. Van Loan Matrix computations , Johns Hopkins University Press, Baltimore, 2013

[6] Hong, J.; Scherer, R.; Wang, L. Midpoint rule for a linear stochastic oscillator with additive noise , Neural Parallel Sci. Comput., Volume 14 (2006), pp. 1-12

[7] Kantorovich, L. V.; Akilov, G. P. Functional analysis, Pergamon Press, Oxford, 1982

[8] H. Keller Attractors and bifurcations of stochastic Lorenz system, in ''Technical Report 389'',Institut fur Dynamische Systeme, Universitat Bremen, 1996

[9] Li, Y.; Brzeźniak, Z.; J. Zhou Conceptual analysis and random attractor for dissipative random dynamical systems, Acta Math. Sci. Ser. B Engl. Ed., Volume 28 (2008), pp. 253-268

[10] G. N. Milstein Numerical integration of stochastic differential equations, Kluwer Academic Publishers, Dordrecht, 1995

[11] Palmer, K. J. Shadowing in dynamical systems, Theory and applications, Kluwer Academic Publishers, Dordrecht, 2000

[12] Sussmann, H. J. An interpretation of stochastic differential equations as ordinary differential equations which depend on the sample point , Bull. Amer. Math. Soc., Volume 83 (1977), pp. 296-298

[13] T. Wang Maximum error bound of a linearized difference scheme for coupled nonlinear Schrodinger equation, J. Comput. Appl. Math., Volume 235 (2011), pp. 4237-4250

[14] Xie, X.; Q. Zhan Uniqueness of limit cycles for a class of cubic system with an invariant straight line , Nonlinear Anal., Volume 70 (2009), pp. 4217-4225

Cité par Sources :